Formula:
"nC_k=\\frac{n!}{k!(n-k)!}"
Solution:
C(8,4):
n=8;r=4
"8C_4=\\frac{8!}{4!(8-4)!}" ="8C_4=\\frac{8!}{4!(4)!}" =70
C(12,7): Here n=12, r= 7
"12C_7=\\frac{12!}{7!(12-7)!}=792"
C(12, 8) n=12, r= 8
"= \\frac{12!}{( 8! (12 - 8)! )}" =495
C(11,1) n=11, r= 1
"= \\frac{11!}{( 1! (11 - 1)! )}" = 11
C(10,9) : n=10, r= 9
"= \\frac{10!}{( 9! (10 - 9)! )}" = 10
C(8,6): n=8, r= 6
"= \\frac{8!}{( 6! (8 - 6)! )}" = 28
Comments
Leave a comment