Question #136806
In class we showed the following: n ∑(k=1) k = n(n+1)/2 and n∑(k=1) k^2 = n(n+ 1)(2n+ 1)/6
Using the fact that (k+ 1)^4-k^4= 4k^3+ 6k^2+ 4k+ 1 and summing up as k= 1,2,3,……, n together with the above two equalities, deduce that n∑(k=1) k^3 = (n(n+1)/2)^2
1
Expert's answer
2020-10-13T19:31:22-0400

Let

S1=k=1n1=1+1+1+...+1=1n=nS_1 =\sum\limits_{k=1}^n1 = 1+1+1+...+1 = 1\cdot n = nS2=k=1nk=n(n+1)2S_2 =\sum\limits_{k=1}^nk=\frac{n(n+1)}{2}S3=k=1nk2=n(n+1)(2n+1)6S_3 = \sum\limits_{k=1}^nk^2=\frac{n(n+1)(2n+1)}{6}S4=k=1nk3S_4 = \sum\limits_{k=1}^nk^3

Use the fact


(k+1)4k4=4k3+6k2+4k+1(k+1)^4 -k^4 =4k^3 +6k^2 +4k+1

Put k=1,2,3...,nk=1,2,3..., n to this formula:

2414=413+612+41+12^4 -1^4 =4\cdot 1^3+6\cdot 1^2 +4\cdot 1+1

3424=423+622+42+13^4 -2^4 =4\cdot 2^3+6\cdot 2^2 +4\cdot 2+1

4434=433+632+43+14^4 -3^4 =4\cdot 3^3+6\cdot 3^2 +4\cdot 3+1

...

(n+1)4n4=4n3+6n2+4n+1(n+1)^4 -n^4 =4\cdot n^3+6\cdot n^2 +4\cdot n+1

Sum left sides of these equalities:

2414+3424+4434+...+(n+1)4n4=(n+1)41\cancel{2^4} -1^4 +\cancel{3^4} -\cancel{2^4} +\cancel{4^4} -\cancel{3^4} +...+(n+1)^4 -\cancel{n^4}=(n+1)^4-1

Sum right sides of these equalities:

4(13+23+...+n3)+6(12+22+...+n2)+4(1+2+...+n)+(1+1+...+1)=4(1^3+2^3+...+n^3)+6(1^2+2^2+...+n^2)+4(1+2+...+n)+(1+1+...+1)=

=4S4+6S3+4S2+S1=4S_4+6S_3 +4S_2 +S_1

Hence

4S4+6S3+4S2+S1=(n+1)414S_4+6S_3 +4S_2 +S_1 =(n+1)^4-1

4S4=(n+1)416S34S2S14S_4=(n+1)^4-1-6S_3-4S_2-S_1

4S4=(n+1)416n(n+1)(2n+1)64n(n+1)2n4S_4 =(n+1)^4 -1-\frac{6n(n+1)(2n+1)}{6}-\frac{4n(n+1)}{2}-n

4S4=(n+1)41n(n+1)(2n+1)2n(n+1)n4S_4 =(n+1)^4-1-n(n+1)(2n+1)-2n(n+1)-n

4S4=(n+1)4n(n+1)(2n+1)2n(n+1)(n+1)4S_4 =(n+1)^4-n(n+1)(2n+1)-2n(n+1)-(n+1)

4S4=(n+1)((n+1)3n(2n+1)2n1)4S_4 =(n+1)((n+1)^3 -n(2n+1)-2n-1)

4S4=(n+1)(n3+3n2+3n+12n2n2n1)4S_4 =(n+1)(n^3+3n^2+\cancel{3n}+\cancel{1}-2n^2-\cancel{n}-\cancel{2n}-\cancel{1})

4S4=(n+1)(n3+n2)4S_4 =(n+1)(n^3+n^2)

4S4=(n+1)n2(n+1)4S_4 =(n+1)\cdot n^2(n+1)

4S4=n2(n+1)24S_4 =n^2(n+1)^2

S4=n2(n+1)24=(n(n+1)2)2S_4 =\frac{n^2(n+1)^2}{4}=(\frac{n(n+1)}{2})^2

k=1nk3=(n(n+1)2)2\sum\limits_{k=1}^nk^3 =(\frac{n(n+1)}{2})^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS