Let
"S_1 =\\sum\\limits_{k=1}^n1 = 1+1+1+...+1 = 1\\cdot n = n""S_2 =\\sum\\limits_{k=1}^nk=\\frac{n(n+1)}{2}""S_3 = \\sum\\limits_{k=1}^nk^2=\\frac{n(n+1)(2n+1)}{6}""S_4 = \\sum\\limits_{k=1}^nk^3"
Use the fact
Put "k=1,2,3..., n" to this formula:
"2^4 -1^4 =4\\cdot 1^3+6\\cdot 1^2 +4\\cdot 1+1"
"3^4 -2^4 =4\\cdot 2^3+6\\cdot 2^2 +4\\cdot 2+1"
"4^4 -3^4 =4\\cdot 3^3+6\\cdot 3^2 +4\\cdot 3+1"
...
"(n+1)^4 -n^4 =4\\cdot n^3+6\\cdot n^2 +4\\cdot n+1"
Sum left sides of these equalities:
"\\cancel{2^4} -1^4 +\\cancel{3^4} -\\cancel{2^4} +\\cancel{4^4} -\\cancel{3^4} +...+(n+1)^4 -\\cancel{n^4}=(n+1)^4-1"
Sum right sides of these equalities:
"4(1^3+2^3+...+n^3)+6(1^2+2^2+...+n^2)+4(1+2+...+n)+(1+1+...+1)="
"=4S_4+6S_3 +4S_2 +S_1"
Hence
"4S_4+6S_3 +4S_2 +S_1 =(n+1)^4-1"
"4S_4=(n+1)^4-1-6S_3-4S_2-S_1"
"4S_4 =(n+1)^4 -1-\\frac{6n(n+1)(2n+1)}{6}-\\frac{4n(n+1)}{2}-n"
"4S_4 =(n+1)^4-1-n(n+1)(2n+1)-2n(n+1)-n"
"4S_4 =(n+1)^4-n(n+1)(2n+1)-2n(n+1)-(n+1)"
"4S_4 =(n+1)((n+1)^3 -n(2n+1)-2n-1)"
"4S_4 =(n+1)(n^3+3n^2+\\cancel{3n}+\\cancel{1}-2n^2-\\cancel{n}-\\cancel{2n}-\\cancel{1})"
"4S_4 =(n+1)(n^3+n^2)"
"4S_4 =(n+1)\\cdot n^2(n+1)"
"4S_4 =n^2(n+1)^2"
"S_4 =\\frac{n^2(n+1)^2}{4}=(\\frac{n(n+1)}{2})^2"
"\\sum\\limits_{k=1}^nk^3 =(\\frac{n(n+1)}{2})^2"
Comments
Leave a comment