If "\\rho^{-1}\\circ\\rho=\\rho", then "\\rho" can be not an equivalence relation. Indeed, if "A=\\{a,b,c\\}" and "\\rho=\\{(a,b),(b,b),(a,a),(b,a)\\}", then "\\rho^{-1}\\circ\\rho=\\rho", but "(c,c)\\not\\in\\rho", so "\\rho" is not an equivalence relation on "A".
We prove that if "\\rho^{-1}\\circ\\rho=\\rho", then "\\rho" is an equivalence relation on "A=\\bigcup\\limits_{(u,v)\\in\\rho}\\{u,v\\}".
Indeed,
1)Let "(a,b)\\in\\rho". Since "\\rho=\\rho^{-1}\\circ\\rho", there is "x\\in A" such that "(a,x)\\in\\rho^{-1}", that is "(x,a)\\in\\rho", and "(x,b)\\in\\rho".
Since "(x,a)\\in\\rho", we have "(a,x)\\in\\rho^{-1}", so "(a,a)\\in\\rho^{-1}\\circ\\rho=\\rho". And since "(x,b)\\in\\rho", we similarly obtain "(b,b)\\in\\rho".
So "\\rho" is reflexive on "A=\\bigcup\\limits_{(u,v)\\in\\rho}\\{u,v\\}".
2)Let "(a,b)\\in\\rho". Then "(b,a)\\in\\rho^{-1}" and by point 1) we have "(a,a)\\in\\rho", so "(b,a)\\in\\rho^{-1}\\circ\\rho=\\rho". So "\\rho" is symmetric on "A=\\bigcup\\limits_{(u,v)\\in\\rho}\\{u,v\\}".
3)Let "(a,b),(b,c)\\in\\rho". By point 2) we have "(b,a)\\in\\rho", that is "(a,b)\\in\\rho^{-1}". So since "(b,c)\\in\\rho", we have "(a,c)\\in\\rho^{-1}\\circ\\rho=\\rho".
So "\\rho" is transitive on "A=\\bigcup\\limits_{(u,v)\\in\\rho}\\{u,v\\}".
We obtain that "\\rho" is an equivalence relation on "A=\\bigcup\\limits_{(u,v)\\in\\rho}\\{u,v\\}".
Now let "\\rho" be an equivalence relation on a set "A". Note that then "A=\\bigcup\\limits_{(u,v)\\in\\rho}\\{u,v\\}". Prove that "\\rho^{-1}\\circ\\rho=\\rho".
Since "\\rho" is symmetric, we have "\\rho^{-1}\\subset\\rho", so "\\rho^{-1}\\circ\\rho\\subset\\rho^2". Since "\\rho" is transtitive, we have "\\rho^2\\subset\\rho", that is "\\rho^{-1}\\circ\\rho\\subset\\rho".
Now prove that "\\rho^{-1}\\circ\\rho\\supset\\rho".
Indeed, let "(a,b)\\in\\rho". We have "a\\in A", so "(a,a)\\in\\rho", that is "(a,a)\\in\\rho^{-1}". Then "(a,b)\\in\\rho^{-1}\\circ\\rho". So we obtain "\\rho^{-1}\\circ\\rho\\supset\\rho".
We have "\\rho^{-1}\\circ\\rho=\\rho".
So we proved that "\\rho^{-1}\\circ\\rho=\\rho" if and only if "\\rho" is an equivalence relation on "A=\\bigcup\\limits_{(u,v)\\in\\rho}\\{u,v\\}"
Comments
Leave a comment