Question #136799
Let ρ be a relation on a set A. Define ρ^−1 = {(b, a) | (a, b) ∈ ρ}. Also, for two relations ρ, σ on
A, define the composite relation ρ ◦ σ as (a, c) ∈ ρ ◦ σ if and only if there exists b ∈ A such that (a, b) ∈ ρ and (b, c) ∈ σ. Prove the following assertions.

i.) If ρ is non-empty, then ρ is an equivalence relation if and only if ρ^−1 ◦ ρ = ρ.
1
Expert's answer
2020-10-08T15:47:25-0400

If ρ1ρ=ρ\rho^{-1}\circ\rho=\rho, then ρ\rho can be not an equivalence relation. Indeed, if A={a,b,c}A=\{a,b,c\} and ρ={(a,b),(b,b),(a,a),(b,a)}\rho=\{(a,b),(b,b),(a,a),(b,a)\}, then ρ1ρ=ρ\rho^{-1}\circ\rho=\rho, but (c,c)∉ρ(c,c)\not\in\rho, so ρ\rho is not an equivalence relation on AA.

We prove that if ρ1ρ=ρ\rho^{-1}\circ\rho=\rho, then ρ\rho is an equivalence relation on A=(u,v)ρ{u,v}A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}.

Indeed,

1)Let (a,b)ρ(a,b)\in\rho. Since ρ=ρ1ρ\rho=\rho^{-1}\circ\rho, there is xAx\in A such that (a,x)ρ1(a,x)\in\rho^{-1}, that is (x,a)ρ(x,a)\in\rho, and (x,b)ρ(x,b)\in\rho.

Since (x,a)ρ(x,a)\in\rho, we have (a,x)ρ1(a,x)\in\rho^{-1}, so (a,a)ρ1ρ=ρ(a,a)\in\rho^{-1}\circ\rho=\rho. And since (x,b)ρ(x,b)\in\rho, we similarly obtain (b,b)ρ(b,b)\in\rho.

So ρ\rho is reflexive on A=(u,v)ρ{u,v}A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}.

2)Let (a,b)ρ(a,b)\in\rho. Then (b,a)ρ1(b,a)\in\rho^{-1} and by point 1) we have (a,a)ρ(a,a)\in\rho, so (b,a)ρ1ρ=ρ(b,a)\in\rho^{-1}\circ\rho=\rho. So ρ\rho is symmetric on A=(u,v)ρ{u,v}A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}.

3)Let (a,b),(b,c)ρ(a,b),(b,c)\in\rho. By point 2) we have (b,a)ρ(b,a)\in\rho, that is (a,b)ρ1(a,b)\in\rho^{-1}. So since (b,c)ρ(b,c)\in\rho, we have (a,c)ρ1ρ=ρ(a,c)\in\rho^{-1}\circ\rho=\rho.

So ρ\rho is transitive on A=(u,v)ρ{u,v}A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}.

We obtain that ρ\rho is an equivalence relation on A=(u,v)ρ{u,v}A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}.

Now let ρ\rho be an equivalence relation on a set AA. Note that then A=(u,v)ρ{u,v}A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}. Prove that ρ1ρ=ρ\rho^{-1}\circ\rho=\rho.

Since ρ\rho is symmetric, we have ρ1ρ\rho^{-1}\subset\rho, so ρ1ρρ2\rho^{-1}\circ\rho\subset\rho^2. Since ρ\rho is transtitive, we have ρ2ρ\rho^2\subset\rho, that is ρ1ρρ\rho^{-1}\circ\rho\subset\rho.

Now prove that ρ1ρρ\rho^{-1}\circ\rho\supset\rho.

Indeed, let (a,b)ρ(a,b)\in\rho. We have aAa\in A, so (a,a)ρ(a,a)\in\rho, that is (a,a)ρ1(a,a)\in\rho^{-1}. Then (a,b)ρ1ρ(a,b)\in\rho^{-1}\circ\rho. So we obtain ρ1ρρ\rho^{-1}\circ\rho\supset\rho.

We have ρ1ρ=ρ\rho^{-1}\circ\rho=\rho.

So we proved that ρ1ρ=ρ\rho^{-1}\circ\rho=\rho if and only if ρ\rho is an equivalence relation on A=(u,v)ρ{u,v}A=\bigcup\limits_{(u,v)\in\rho}\{u,v\}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS