Question #111334
Let A and B be finite sets for which |A|=|B| and suppose f: A —> B. Prove that f is injective if and only if f is surjective
1
Expert's answer
2020-04-22T18:40:58-0400

n=A=B(1)  If  f  surjective.Lets  prove  that  its  also  injective.That  means  that  yB  xA:  f(x)=y.In  another  words:for  every  yB  exists  xAsuch  as  f(x)=y.Let  consider  y1,y2B(y1y2)and  x1,x2A  such  asf(x1)=y1        f(x2)=y2So,  x1    x2.So,  for  every  distinct  yB  there  is  unique  xA.There  is  n  distinct  y    n  distinct  x.So,  for  every  x  there  is  distinct  y.So,  function  is  injective.(2)  If  f    injective.Lets  prove  that  its  also  surjective.For  different  xA,  there  are  diferrent  yB  such  as  f(x)=y.Since  we  have  n  different  xAwe  should  have  n  different  yB.Since  n=B  every  yB  has  xA  such  as  f(x)=y.So,  function  is  surjective.Checking  both  cases  when  one  conditionis  true  we  get  second  condition  also  being  true.n=\vert A\vert=\vert B\vert\\(1)\;If\;f\;-surjective.\\Let's\;prove\;that\;it's\;also\;injective.\\That\;means\;that\;\\\forall y\in B\;\exists x\in A:\;f(x)=y.\\In\;another\;words:\\for\;every\;y\in B\;exists\;x\in A\\such\;as\;f(x)=y.\\Let\;consider\;y_1,y_2\in B(y_1\neq y_2)\\and\;x_1,x_2\in A\;such\;as\\f(x_1)=y_1\;\;\neq\;\;f(x_2)=y_2\\So,\;x_1\;\neq\;x_2.\\So,\;for\;every\;distinct\;y\in B\;there\;is\;\\unique\;x\in A.\\There\;is\;n\;distinct\;y\;\Rightarrow\;n\;distinct\;x.\\So,\;for\;every\;x\;there\;is\;distinct\;y.\\So,\;function\;is\;injective.\\(2)\;If\;f\;-\;injective.\\Let's\;prove\;that\;it's\;also\;surjective.\\For\;different\;x\in A,\;there\;are\;\\diferrent\;y\in B\;such\;as\;f(x)=y.\\Since\;we\;have\;n\;different\;x\in A\\we\;should\;have\;n\;different\;y\in B.\\Since\;n=\vert B\vert\;every\;y\in B\;has\;x\in A\;\\such\;as\;f(x)=y.\\So,\;function\;is\;surjective.\\Checking\;both\;cases\;when\;one\;condition\\is\;true\;we\;get\;second\;condition\;also\;being\;true.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS