"n=\\vert A\\vert=\\vert B\\vert\\\\(1)\\;If\\;f\\;-surjective.\\\\Let's\\;prove\\;that\\;it's\\;also\\;injective.\\\\That\\;means\\;that\\;\\\\\\forall y\\in B\\;\\exists x\\in A:\\;f(x)=y.\\\\In\\;another\\;words:\\\\for\\;every\\;y\\in B\\;exists\\;x\\in A\\\\such\\;as\\;f(x)=y.\\\\Let\\;consider\\;y_1,y_2\\in B(y_1\\neq y_2)\\\\and\\;x_1,x_2\\in A\\;such\\;as\\\\f(x_1)=y_1\\;\\;\\neq\\;\\;f(x_2)=y_2\\\\So,\\;x_1\\;\\neq\\;x_2.\\\\So,\\;for\\;every\\;distinct\\;y\\in B\\;there\\;is\\;\\\\unique\\;x\\in A.\\\\There\\;is\\;n\\;distinct\\;y\\;\\Rightarrow\\;n\\;distinct\\;x.\\\\So,\\;for\\;every\\;x\\;there\\;is\\;distinct\\;y.\\\\So,\\;function\\;is\\;injective.\\\\(2)\\;If\\;f\\;-\\;injective.\\\\Let's\\;prove\\;that\\;it's\\;also\\;surjective.\\\\For\\;different\\;x\\in A,\\;there\\;are\\;\\\\diferrent\\;y\\in B\\;such\\;as\\;f(x)=y.\\\\Since\\;we\\;have\\;n\\;different\\;x\\in A\\\\we\\;should\\;have\\;n\\;different\\;y\\in B.\\\\Since\\;n=\\vert B\\vert\\;every\\;y\\in B\\;has\\;x\\in A\\;\\\\such\\;as\\;f(x)=y.\\\\So,\\;function\\;is\\;surjective.\\\\Checking\\;both\\;cases\\;when\\;one\\;condition\\\\is\\;true\\;we\\;get\\;second\\;condition\\;also\\;being\\;true."
Comments
Leave a comment