Direct proof.Let y = x2∈Q+Since x>0⇒x2<xy<xProof by contradiction.Let x=ab be the smallest positive rationalnumber.Consider y =ab+1.Since both a, b are natural, we have ab+1<ab⇒y<xSo, contradiction.Thus, for every x∈Q+ there is always somey∈Q+ such that y<x.Direct\;proof.\\Let\;y\;=\;\frac x2\in Q_+\\Since\;x>0\Rightarrow\frac x2<x\\y<x\\Proof\;by\;contradiction.\\Let\;x=\frac ab\;be\;the\;smallest\;positive\;rational\\number.\\Consider\;\;y\;=\frac a{b+1}.\\Since\;both\;a,\;b\;are\;natural,\;we\;have\;\\\frac a{b+1}<\frac ab\Rightarrow y<x\\So,\;contradiction.\\Thus, \,for\;every\;x\in Q_{+\;}there\;is\;always\;some\\y\in Q_+\;such \,that\;\;y<x.Directproof.Lety=2x∈Q+Sincex>0⇒2x<xy<xProofbycontradiction.Letx=babethesmallestpositiverationalnumber.Considery=b+1a.Sincebotha,barenatural,wehaveb+1a<ba⇒y<xSo,contradiction.Thus,foreveryx∈Q+thereisalwayssomey∈Q+suchthaty<x.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments