Answer to Question #346825 in Differential Equations for Genius

Question #346825

Find a general solution for the differential equation -y''=6x+xe^x (a) using the method of undetermined coefficients. (b) using variation of parameters

1
Expert's answer
2022-06-02T13:50:40-0400

a)

Homogeneous differential equation is


y=0y''=0

Characteristic (auxiliary) equation


r2=0r^2=0

The general solution of the homogeneous differential equation is


yh=C1+C2xy_h=C_1+C_2x


Find the particular solution of the non homogeneous differential equation in the form


yp=x2(Ax+B)+(Cx+D)exy_p=x^2(Ax+B)+(Cx+D)e^x

Then


yp=3Ax2+2Bx+Cex+(Cx+D)exy_p'=3Ax^2+2Bx+Ce^x+(Cx+D)e^x

yp=6Ax+2B+2Cex+Cxex+Dexy_p''=6Ax+2B+2Ce^x+Cxe^x+De^x

Substitute


6Ax+2B+2Cex+Cxex+Dex=6xxex6Ax+2B+2Ce^x+Cxe^x+De^x=-6x-xe^x

A=1,B=0,C=1,D=2A=-1, B=0, C=-1, D=2

C=1C=-1

The general solution of the given nonhomogeneous differential equation is

y=x3xex+2ex+C1+C2xy=-x^3-xe^x+2e^x+C_1+C_2x

b)

Homogeneous differential equation is


y=0y''=0

Characteristic (auxiliary) equation


r2=0r^2=0

The general solution of the homogeneous differential equation is


yh=C1+C2xy_h=C_1+C_2x

y=C1+C2x+C2y'=C_1'+C_2'x+C_2

Let

C1+C2x=0C_1'+C_2'x=0

Then


y=C2y'=C_2

y=C2y''=C_2'

Substitute


C2=6xxexC_2'=-6x-xe^x

C2=(6xxex)dxC_2=\int(-6x-xe^x)dx

xexdx=xexexdx=xexexC3\int xe^xdx=xe^x-\int e^xdx=xe^x-e^x-C_3

C2=3x2xex+ex+C3C_2=-3x^2-xe^x+e^x+C_3


C1=C2xC_1'=-C_2'x

C1=6x2+x2exC_1'=6x^2+x^2e^x

C1=(6x2+x2ex)dxC_1=\int(6x^2+x^2e^x)dx

x2exdx=x2ex2xexdx\int x^2e^xdx=x^2e^x-2\int xe^xdx

=x2ex2xex+2ex+C4=x^2e^x-2xe^x+2e^x+C_4


C1=2x3+x2ex2xex+2ex+C4C_1=2x^3+x^2e^x-2xe^x+2e^x+C_4

The general solution of the given nonhomogeneous differential equation is


y=2x3+x2ex2xex+2ex+C4y=2x^3+x^2e^x-2xe^x+2e^x+C_4

3x3x2ex+xex+C3x-3x^3-x^2e^x+xe^x+C_3x

y=x3xex+2ex+C4+C3xy=-x^3-xe^x+2e^x+C_4+C_3x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment