of variation of parameters y′′ + 4y = 4sec(2x)
The corresponding homogeneous differential equation is
Corresponding (auxiliary) equation is
"r_1=2i, r_2=-2i"
The general solution of the homogeneous differential equation is
Consider
"y_1'=C_1'\\cos(2x)-2C_1\\sin(2x)+"
"+C_2'\\sin(2x)+2C_2\\cos(2x)"
Let "C_1'\\cos(2x)+C_2'\\sin(2x)=0." Then
"y_1''=-2C_1'\\sin(2x)-4C_1\\cos(2x)"
"+2C_2'\\cos(2x)-4C_2\\sin(2x)"
Substitute
"+2C_2'\\cos(2x)-4C_2\\sin(2x)"
Solve the system
"C_1'\\cos(2x)+C_2'\\sin(2x)=0""-C_1'\\sin(2x)\\cos(2x)+C_2'\\cos^2(2x)=2"
"C_1'\\cos(2x)+C_2'\\sin(2x)=0""C_2'=2"
Integrate
"C_2=2x+C_4"
The general solution of the non homogeneous differential equation is
Comments
Leave a comment