x(dy)/(dx)=x^(2) + 5y
"x\\frac{dy}{dx}=x^2+5y"
"y\u2019-5\\frac{y}{x}=x" (1)
Let’s solve the following equationÂ
"y\u2019-5\\frac{y}{x}=0"
"\\frac {dy}{y}=5\\frac{dx}{x}"
"y=C(x)x^{5}"
To find solution of the equation (1) we should think C is a function of x
"y'=C'x^{5}+5Cx^{4}"
Substitution y and y’ into (1) gives
"C'x^{5}+5Cx^{4} -5\\frac{Cx^{5}}{x}=x"
"C'=x^{-4}"
"C=\\frac{1}{-3x^3}+C_1"
"y=(\\frac{1}{-3x^3}+C_1)x^5=-\\frac13x^2+C_1x^5"
Answer: "y=(\\frac{1}{-3x^3}+C_1)x^5=-\\frac13x^2+C_1x^5" .
Comments
Leave a comment