y′′+3y+2y=e−t,y(0)=0,y′(0)=0λ2+3λ+2=0⇒λ∈{−1,−2}y=C1e−t+C2e−2t−thesolutionofhomogeneousequationThepartialsolutionoftheformAte−t,since−1isacharacteristicnumberofmultiplicity1y′=(−At+A)e−ty′′=(At−2A)e−t(At−2A)e−t+3(−At+A)e−t+2Ate−t=e−tAe−t=e−t⇒A=1Thusy=te−t+C1e−t+C2e−2ty′=e−t−te−t−C1e−t−2C2e−2t{y(0)=0y′(0)=0⇒{C1+C2=01−C1−2C2=0⇒{C1=−1C2=1y=te−t−e−t+e−2t
Comments