Question #324489

y"+3y'+2y=e^(-t) , y(0)=0, y'(0)=0


1
Expert's answer
2022-04-07T06:42:52-0400

y+3y+2y=et,y(0)=0,y(0)=0λ2+3λ+2=0λ{1,2}y=C1et+C2e2tthesolutionofhomogeneousequationThepartialsolutionoftheformAtet,since1isacharacteristicnumberofmultiplicity1y=(At+A)ety=(At2A)et(At2A)et+3(At+A)et+2Atet=etAet=etA=1Thusy=tet+C1et+C2e2ty=ettetC1et2C2e2t{y(0)=0y(0)=0{C1+C2=01C12C2=0{C1=1C2=1y=tetet+e2ty''+3y+2y=e^{-t},y\left( 0 \right) =0,y'\left( 0 \right) =0\\\lambda ^2+3\lambda +2=0\Rightarrow \lambda \in \left\{ -1,-2 \right\} \\y=C_1e^{-t}+C_2e^{-2t}-the\,\,solution\,\,of\,\,homogeneous\,\,equation\\The\,\,partial\,\,solution\,\,of\,\,the\,\,form\,\,Ate^{-t},\sin ce\,\,-1 is\,\,a\,\,characteristic\,\,number\,\,of\,\,multiplicity\,\,1\\y'=\left( -At+A \right) e^{-t}\\y''=\left( At-2A \right) e^{-t}\\\left( At-2A \right) e^{-t}+3\left( -At+A \right) e^{-t}+2Ate^{-t}=e^{-t}\\Ae^{-t}=e^{-t}\Rightarrow A=1\\Thus\,\,\\y=te^{-t}+C_1e^{-t}+C_2e^{-2t}\\y'=e^{-t}-te^{-t}-C_1e^{-t}-2C_2e^{-2t}\\\left\{ \begin{array}{c} y\left( 0 \right) =0\\ y'\left( 0 \right) =0\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} C_1+C_2=0\\ 1-C_1-2C_2=0\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} C_1=-1\\ C_2=1\\\end{array} \right. \\y=te^{-t}-e^{-t}+e^{-2t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS