Question #325140

x(dy)/(dx)=x^(2) + 5y

1
Expert's answer
2022-04-08T02:28:16-0400
xy=x2+5yxy'=x^2+5y

y5xy=xy'-\frac{5}{x}y=x

We put

y=uvy=uv+uvy=uv\\ y'=u'v+uv'

Then

uv+uv5xuv=xu'v+uv'-\frac{5}{x}uv=x

u(v5xv)+uv=xu(v'-\frac{5}{x}v)+u'v=x

Let

v5xv=0v'-\frac{5}{x}v=0

Then

v=5xvv'=\frac{5}{x}v

lnv=5lnx\ln v=5\ln x

v=x5v=x^5

Thus

x5u=xx^5u'=x

u=x4u'=x^{-4}

u=1/3x3+Cu=-1/3x^{-3}+C

Finally

y=uv=(1/3x3+C)x5y=uv=(-1/3x^{-3}+C)x^5

y=1/3x2+Cx5y=-1/3x^2+Cx^5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS