x(dy)/(dx)=x^(2) + 5y
"y'-\\frac{5}{x}y=x"
We put
"y=uv\\\\\ny'=u'v+uv'"Then
"u'v+uv'-\\frac{5}{x}uv=x""u(v'-\\frac{5}{x}v)+u'v=x"
Let
"v'-\\frac{5}{x}v=0"Then
"v'=\\frac{5}{x}v""\\ln v=5\\ln x"
"v=x^5"
Thus
"x^5u'=x""u'=x^{-4}"
"u=-1\/3x^{-3}+C"
Finally
"y=uv=(-1\/3x^{-3}+C)x^5""y=-1\/3x^2+Cx^5"
Comments
Leave a comment