Determine the unique solution of the following differential equations by using Laplace transforms:
y''(t)-6y'(t)+9y(t) = t2e3t if y'(0) = 6 and y(0) = 2
y′′−6y′+9y=t2e3t,y′(0)=6,y(0)=2y(t)→Y(p)p2Y(p)−py(0)−y′(0)−6(pY(p)−y(0))+9Y(p)=2!(p−3)3p2Y(p)−2p−6−6(pY(p)−2)+9Y(p)=2(p−3)3Y(p)=2(p−3)5+2p−3→2⋅t44!e3t+2e3t==112t4e3t+2e3ty''-6y'+9y=t^2e^{3t},y'\left( 0 \right) =6,y\left( 0 \right) =2\\y\left( t \right) \rightarrow Y\left( p \right) \\p^2Y\left( p \right) -py\left( 0 \right) -y'\left( 0 \right) -6\left( pY\left( p \right) -y\left( 0 \right) \right) +9Y\left( p \right) =\frac{2!}{\left( p-3 \right) ^3}\\p^2Y\left( p \right) -2p-6-6\left( pY\left( p \right) -2 \right) +9Y\left( p \right) =\frac{2}{\left( p-3 \right) ^3}\\Y\left( p \right) =\frac{2}{\left( p-3 \right) ^5}+\frac{2}{p-3}\rightarrow 2\cdot \frac{t^4}{4!}e^{3t}+2e^{3t}=\\=\frac{1}{12}t^4e^{3t}+2e^{3t}y′′−6y′+9y=t2e3t,y′(0)=6,y(0)=2y(t)→Y(p)p2Y(p)−py(0)−y′(0)−6(pY(p)−y(0))+9Y(p)=(p−3)32!p2Y(p)−2p−6−6(pY(p)−2)+9Y(p)=(p−3)32Y(p)=(p−3)52+p−32→2⋅4!t4e3t+2e3t==121t4e3t+2e3t
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments