Determine the unique solution of the following differential equations by using Laplace transforms:
y''(t)-6y'(t)+9y(t) = t2e3t if y'(0) = 6 and y(0) = 2
"y''-6y'+9y=t^2e^{3t},y'\\left( 0 \\right) =6,y\\left( 0 \\right) =2\\\\y\\left( t \\right) \\rightarrow Y\\left( p \\right) \\\\p^2Y\\left( p \\right) -py\\left( 0 \\right) -y'\\left( 0 \\right) -6\\left( pY\\left( p \\right) -y\\left( 0 \\right) \\right) +9Y\\left( p \\right) =\\frac{2!}{\\left( p-3 \\right) ^3}\\\\p^2Y\\left( p \\right) -2p-6-6\\left( pY\\left( p \\right) -2 \\right) +9Y\\left( p \\right) =\\frac{2}{\\left( p-3 \\right) ^3}\\\\Y\\left( p \\right) =\\frac{2}{\\left( p-3 \\right) ^5}+\\frac{2}{p-3}\\rightarrow 2\\cdot \\frac{t^4}{4!}e^{3t}+2e^{3t}=\\\\=\\frac{1}{12}t^4e^{3t}+2e^{3t}"
Comments
Leave a comment