Question #324447

Determine L-1{es(s2-1/(s2+1)2)}


1
Expert's answer
2022-04-07T07:02:23-0400

L1{es(s21(s2+1)2)}=L1(ess2+12es(s2+1)2)L1(1s2+1)=sintL1(ess2+1)=sin(t+1)L1(2s(s2+1)2)=L1((1s2+1))=tsintL1(1(s2+1)2)=12L1(2s(s2+1)s)=120t(xsinx)dx==12(xcosx0t0tcosxdx)=12(tcost+sint)L1(es(s2+1)2)=12((t+1)cos(t+1)+sin(t+1))L1{es(s21(s2+1)2)}=sin(t+1)212((t+1)cos(t+1)+sin(t+1))==(t+1)cos(t+1)L^{-1}\left\{ e^s\left( \frac{s^2-1}{\left( s^2+1 \right) ^2} \right) \right\} =L^{-1}\left( \frac{e^s}{s^2+1}-2\frac{e^s}{\left( s^2+1 \right) ^2} \right) \\L^{-1}\left( \frac{1}{s^2+1} \right) =\sin t\Rightarrow L^{-1}\left( \frac{e^s}{s^2+1} \right) =\sin \left( t+1 \right) \\L^{-1}\left( -\frac{2s}{\left( s^2+1 \right) ^2} \right) =L^{-1}\left( \left( \frac{1}{s^2+1} \right) ' \right) =t\sin t\\L^{-1}\left( \frac{1}{\left( s^2+1 \right) ^2} \right) =-\frac{1}{2}L^{-1}\left( \frac{\frac{2s}{\left( s^2+1 \right)}}{s} \right) =-\frac{1}{2}\int_0^t{\left( -x\sin x \right) dx}=\\=-\frac{1}{2}\left( x\cos x|_{0}^{t}-\int_0^t{\cos xdx} \right) =\frac{1}{2}\left( -t\cos t+\sin t \right) \\L^{-1}\left( \frac{e^s}{\left( s^2+1 \right) ^2} \right) =\frac{1}{2}\left( -\left( t+1 \right) \cos \left( t+1 \right) +\sin \left( t+1 \right) \right) \\L^{-1}\left\{ e^s\left( \frac{s^2-1}{\left( s^2+1 \right) ^2} \right) \right\} =\sin \left( t+1 \right) -2\cdot \frac{1}{2}\left( -\left( t+1 \right) \cos \left( t+1 \right) +\sin \left( t+1 \right) \right) =\\=\left( t+1 \right) \cos \left( t+1 \right)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS