Question #324389

Find the general solutions of the following differential equations using D-operator methods:

2.1 (D2 - 2D + 5)y = x+5

2.2 (D+4)2 x = sinh4t


1
Expert's answer
2022-04-06T17:18:34-0400

2.1:(D22D+5)y=x+5ϕ(D)=D22D+5=(D1)2+22((D1)2+22)y=x+5Thesolutionofthehomogeneousequationisy=Aexcos2x+Bexsin2xParticularsolution:y=C0+C1x:(D22D+5)(C0+C1x)=x+52C1+5(C0+C1x)=x+5{2C1+5C0=55C1=1{C1=0.2C0=1.5y=1.5+0.2x+Aexcos2x+Bexsin2x2.2:(D+4)2x=sinh4te4tD2e4tx=sinh4tD2e4tx=e4tsinh4tD2e4tx=12e8t12De4tx=(12e8t12)dt=116e8t12t+C1e4tx=(116e8t12t+C1)dt=1128e8t12t2+C1t+C2x=1128e4t12t2e4t+C1te4t+C2e4t2.1:\\\left( D^2-2D+5 \right) y=x+5\\\phi \left( D \right) =D^2-2D+5=\left( D-1 \right) ^2+2^2\\\left( \left( D-1 \right) ^2+2^2 \right) y=x+5\\The\,\,solution\,\,of\,\,the\,\,homogeneous\,\,equation\,\,is\\y=Ae^x\cos 2x+Be^x\sin 2x\\Particular\,\,solution:\\y=C_0+C_1x:\\\left( D^2-2D+5 \right) \left( C_0+C_1x \right) =x+5\\-2C_1+5\left( C_0+C_1x \right) =x+5\\\left\{ \begin{array}{c} -2C_1+5C_0=5\\ 5C_1=1\\\end{array} \right. \Rightarrow \left\{ \begin{array}{c} C_1=0.2\\ C_0=1.5\\\end{array} \right. \\y=1.5+0.2x+Ae^x\cos 2x+Be^x\sin 2x\\2.2:\\\left( D+4 \right) ^2x=\sinh 4t\\e^{-4t}D^2e^{4t}x=\sinh 4t\\D^2e^{4t}x=e^{4t}\sinh 4t\\D^2e^{4t}x=\frac{1}{2}e^{8t}-\frac{1}{2}\\De^{4t}x=\int{\left( \frac{1}{2}e^{8t}-\frac{1}{2} \right) dt}=\frac{1}{16}e^{8t}-\frac{1}{2}t+C_1\\e^{4t}x=\int{\left( \frac{1}{16}e^{8t}-\frac{1}{2}t+C_1 \right) dt}=\frac{1}{128}e^{8t}-\frac{1}{2t^2}+C_1t+C_2\\x=\frac{1}{128}e^{4t}-\frac{1}{2t^2}e^{-4t}+C_1te^{-4t}+C_2e^{-4t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS