45) Find the integral surface of the equation x(y ^ 2 + z) * p - y(x ^ 2 + z) * q = (x ^ 2 - y ^ 2) * z whic the straight line x + y = 0, z = 1
"x(y ^ 2 + z)\\frac{\\partial z}{dx}- y(x ^ 2 + z)\\frac{\\partial z}{dy}=(x ^ 2 - y ^ 2) z"
"x + y = 0, z = 1"
The auxiliary equations is:
"\\frac{dx}{x(y ^ 2 + z)}=\\frac{dy}{- y(x ^ 2 + z)}=\\frac{dz}{(x ^ 2 - y ^ 2) z}"
A first characteristic equation comes from
"\\frac{xdx+ydy}{x^2(y ^ 2 + z)- y^2(x ^ 2 + z)}=\\frac{dz}{(x ^ 2 - y ^ 2) z}"
"\\frac{xdx+ydy}{(x ^ 2 - y ^ 2) z}=\\frac{dz}{(x ^ 2 - y ^ 2) z}"
"xdx+ydy=dz"
"\\frac{x^2+y^2}{2}=z+\\frac{C_1}{2}"
"C_1=x^2+y^2-2z"
A second characteristic equation comes from
"\\frac{ydx+xdy}{xy(y ^ 2 + z)- xy(x ^ 2 + z)}=\\frac{dz}{(x ^ 2 - y ^ 2) z}"
"\\frac{ydx+xdy}{-xy(x ^ 2 - y ^ 2) }=\\frac{dz}{(x ^ 2 - y ^ 2) z}"
"\\frac{d(xy)}{-xy}=\\frac{dz}{ z}"
"-\\ln{|xy|}+\\ln{C_2}=\\ln {|z|}"
"\\frac{C_2}{xy}=z"
"C_2=xyz"
General solution of the PDE on the form of implicit equation:
"\\Phi(C_1,C_2)=0".
"C_1=x^2+y^2-2z=x^2+y^2+2xy-2xy-2z=""(x+y)^2-2xy-2z" (1)
"C_2=xyz" (2)
Substitute (2) into (1):
"C_1=(x+y)^2-2\\frac{C_2}{z}-2z"
Use "x + y = 0, z = 1" to exclude "C_1" and "C_2" :
"C_1=(0)^2-2\\frac{C_2}{1}-2\\cdot1=-2C_2-2"
"-2C_2-2=x^2+y^2-2z"
"-2xyz-2=x^2+y^2-2z"
"z=\\frac{x^2+y^2}{2}+xyz+1"
Answer: "z=\\frac{x^2+y^2}{2}+xyz+1" .
Comments
Leave a comment