y ′ ′ ′ + y = 3 + e − x + 5 e 2 x y'''+y=3+e^{-x}+5e^{2x} y ′′′ + y = 3 + e − x + 5 e 2 x
The solutions to a nonhomogeneous equation are of the form
y ( x ) = y c ( x ) + y p ( x ) y(x) = y_c(x) + y_p(x) y ( x ) = y c ( x ) + y p ( x ) ,
where y c y_c y c is the general solution to the associated homogeneous equation and y p y_p y p is a particular solution.
The associated homogeneous equation:
y ′ ′ ′ + y = 0 y'''+y=0 y ′′′ + y = 0
The general solution of this equation is determined by the roots of the characteristic equation:
λ 3 + 1 = 0 \lambda^3+1=0 λ 3 + 1 = 0
( λ + 1 ) ( λ 2 − λ + 1 ) = 0 (\lambda+1)(\lambda^2-\lambda+1)=0 ( λ + 1 ) ( λ 2 − λ + 1 ) = 0
λ 1 = − 1 \lambda_1=-1 λ 1 = − 1
( λ 2 − λ + 1 ) = 0 (\lambda^2-\lambda+1)=0 ( λ 2 − λ + 1 ) = 0
D = b 2 − 4 a c = 1 − 4 = − 3 D=b^2-4ac=1-4=-3 D = b 2 − 4 a c = 1 − 4 = − 3
λ 2 , 3 = 1 ± i 3 2 \lambda_{2,3}=\frac{1\pm i\sqrt 3}{2} λ 2 , 3 = 2 1 ± i 3 , where i = − 1 i=\sqrt{-1} i = − 1 .
y c ( x ) = c 1 e − x + e x 2 ( c 2 cos 3 2 x + c 3 sin 3 2 x ) y_c(x)=c_1e^{-x}+e^{\frac x2}(c_2\cos{\frac{\sqrt3}{2}x}+c_3\sin{\frac{\sqrt3}{2}x}) y c ( x ) = c 1 e − x + e 2 x ( c 2 cos 2 3 x + c 3 sin 2 3 x ) .
The particular solution of the differential equation:
y p ( x ) = A + x B e − x + C e 2 x y_p(x)=A+xBe^{-x}+Ce^{2x} y p ( x ) = A + x B e − x + C e 2 x
y p ′ = B e − x − x B e − x + 2 C e 2 x y_p'=Be^{-x}-xBe^{-x}+2Ce^{2x} y p ′ = B e − x − x B e − x + 2 C e 2 x
y p ′ ′ = − 2 B e − x + x B e − x + 4 C e 2 x y_p''=-2Be^{-x}+xBe^{-x}+4Ce^{2x} y p ′′ = − 2 B e − x + x B e − x + 4 C e 2 x
y p ′ ′ ′ = 3 B e − x − x B e − x + 8 C e 2 x y_p'''=3Be^{-x}-xBe^{-x}+8Ce^{2x} y p ′′′ = 3 B e − x − x B e − x + 8 C e 2 x
Now put these into the original differential equation to get:
3 B e − x − x B e − x + 8 C e 2 x + A + x B e − x + C e 2 x = 3Be^{-x}-xBe^{-x}+8Ce^{2x}+A+xBe^{-x}+Ce^{2x}= 3 B e − x − x B e − x + 8 C e 2 x + A + x B e − x + C e 2 x = 3 + e − x + 5 e 2 x 3+e^{-x}+5e^{2x} 3 + e − x + 5 e 2 x
Equating coefficients, we get
A = 3 A=3 A = 3 ; B = 1 3 B=\frac13 B = 3 1 ; C = 5 9 C=\frac59 C = 9 5 .
y p ( x ) = 3 + x 3 e − x + 5 9 e 2 x y_p(x)=3+\frac x3e^{-x}+\frac59e^{2x} y p ( x ) = 3 + 3 x e − x + 9 5 e 2 x
Answer: y = c 1 e − x + e x 2 ( c 2 cos 3 2 x + c 3 sin 3 2 x ) + y=c_1e^{-x}+e^{\frac x2}(c_2\cos{\frac{\sqrt3}{2}x}+c_3\sin{\frac{\sqrt3}{2}x})+ y = c 1 e − x + e 2 x ( c 2 cos 2 3 x + c 3 sin 2 3 x ) + 3 + x 3 e − x + 5 9 e 2 x 3+\frac x3e^{-x}+\frac59e^{2x} 3 + 3 x e − x + 9 5 e 2 x .
Comments