(D^3+1) y= 3+e^(-x) +5e^2x?
"y'''+y=3+e^{-x}+5e^{2x}"
The solutions to a nonhomogeneous equation are of the form
"y(x) = y_c(x) + y_p(x)"Â ,
where "y_c" is the general solution to the associated homogeneous equation and "y_p" is a particular solution.
The associated homogeneous equation:
"y'''+y=0"
The general solution of this equation is determined by the roots of the characteristic equation:
"\\lambda^3+1=0"
"(\\lambda+1)(\\lambda^2-\\lambda+1)=0"
"\\lambda_1=-1"
"(\\lambda^2-\\lambda+1)=0"
"D=b^2-4ac=1-4=-3"
"\\lambda_{2,3}=\\frac{1\\pm i\\sqrt 3}{2}" , where "i=\\sqrt{-1}" .
"y_c(x)=c_1e^{-x}+e^{\\frac x2}(c_2\\cos{\\frac{\\sqrt3}{2}x}+c_3\\sin{\\frac{\\sqrt3}{2}x})"Â .
The particular solution of the differential equation:
"y_p(x)=A+xBe^{-x}+Ce^{2x}"
"y_p'=Be^{-x}-xBe^{-x}+2Ce^{2x}"
"y_p''=-2Be^{-x}+xBe^{-x}+4Ce^{2x}"
"y_p'''=3Be^{-x}-xBe^{-x}+8Ce^{2x}"
Now put these into the original differential equation to get:
"3Be^{-x}-xBe^{-x}+8Ce^{2x}+A+xBe^{-x}+Ce^{2x}=""3+e^{-x}+5e^{2x}"
Equating coefficients, we get
"A=3";Â Â Â "B=\\frac13"; "C=\\frac59".
"y_p(x)=3+\\frac x3e^{-x}+\\frac59e^{2x}"
Answer:Â "y=c_1e^{-x}+e^{\\frac x2}(c_2\\cos{\\frac{\\sqrt3}{2}x}+c_3\\sin{\\frac{\\sqrt3}{2}x})+""3+\\frac x3e^{-x}+\\frac59e^{2x}" .
Comments
Leave a comment