Question #322880

(D^3+1) y= 3+e^(-x) +5e^2x?

1
Expert's answer
2022-04-04T16:32:29-0400

y+y=3+ex+5e2xy'''+y=3+e^{-x}+5e^{2x}

The solutions to a nonhomogeneous equation are of the form

y(x)=yc(x)+yp(x)y(x) = y_c(x) + y_p(x) ,

where ycy_c is the general solution to the associated homogeneous equation and ypy_p is a particular solution.

The associated homogeneous equation:

y+y=0y'''+y=0

The general solution of this equation is determined by the roots of the characteristic equation:

λ3+1=0\lambda^3+1=0

(λ+1)(λ2λ+1)=0(\lambda+1)(\lambda^2-\lambda+1)=0

λ1=1\lambda_1=-1

(λ2λ+1)=0(\lambda^2-\lambda+1)=0

D=b24ac=14=3D=b^2-4ac=1-4=-3

λ2,3=1±i32\lambda_{2,3}=\frac{1\pm i\sqrt 3}{2} , where i=1i=\sqrt{-1} .

yc(x)=c1ex+ex2(c2cos32x+c3sin32x)y_c(x)=c_1e^{-x}+e^{\frac x2}(c_2\cos{\frac{\sqrt3}{2}x}+c_3\sin{\frac{\sqrt3}{2}x}) .

The particular solution of the differential equation:

yp(x)=A+xBex+Ce2xy_p(x)=A+xBe^{-x}+Ce^{2x}

yp=BexxBex+2Ce2xy_p'=Be^{-x}-xBe^{-x}+2Ce^{2x}

yp=2Bex+xBex+4Ce2xy_p''=-2Be^{-x}+xBe^{-x}+4Ce^{2x}

yp=3BexxBex+8Ce2xy_p'''=3Be^{-x}-xBe^{-x}+8Ce^{2x}

Now put these into the original differential equation to get:

3BexxBex+8Ce2x+A+xBex+Ce2x=3Be^{-x}-xBe^{-x}+8Ce^{2x}+A+xBe^{-x}+Ce^{2x}=3+ex+5e2x3+e^{-x}+5e^{2x}

Equating coefficients, we get

A=3A=3;   B=13B=\frac13; C=59C=\frac59.

yp(x)=3+x3ex+59e2xy_p(x)=3+\frac x3e^{-x}+\frac59e^{2x}

Answer: y=c1ex+ex2(c2cos32x+c3sin32x)+y=c_1e^{-x}+e^{\frac x2}(c_2\cos{\frac{\sqrt3}{2}x}+c_3\sin{\frac{\sqrt3}{2}x})+3+x3ex+59e2x3+\frac x3e^{-x}+\frac59e^{2x} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS