An inductance of 1 henry and a resistance of 1 ohm are connected in series with a constant EMF of E volts. If the current is initially zero, and is equal to 10 A after 5 seconds, find E.
LdIdt+RI=EL\frac{dI}{dt}+RI=ELdtdI+RI=E
1dIdt+1I=E1\frac{dI}{dt}+1I=E1dtdI+1I=E
dIdt+I=E\frac{dI}{dt}+I=EdtdI+I=E
dIdt=E−I\frac{dI}{dt}=E-IdtdI=E−I
dIE−I=dt\frac{dI}{E-I}=dtE−IdI=dt
integrate both sides;
∫dIE−I=∫dt\int \frac{dI}{E-I}=\int dt∫E−IdI=∫dt
−log(E−I)∣0i=t∣0t-log(E-I)|_0^i=t|_0^t−log(E−I)∣0i=t∣0t
at t=5, I=10A
Replace the above conditions in the integral;
−log(E−10)=5-log(E-10)=5−log(E−10)=5
logE10=−5log\frac{E}{10}=-5log10E=−5
E10=e−5\frac{E}{10}=e^{-5}10E=e−5
E=e−5∗10E=e^{-5}*10E=e−5∗10
E=0.0674VE=0.0674VE=0.0674V
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments