Solution;
Let y represent the amount of salt in the tank at time t, where t is given in minutes;
dtdy=Rin−Rout
Rin=gal3lbs×min2gals=6lbs/min
Volume of mixture at time time t;
V(t)=100+(2−1.5)t
V(t)=100+0.5t
Rout=1.5×100+0.5ty=100+0.5t1.5y
Hence;
dtdy=6−100+0.5t1.5y
Rewrite;
dtdy+100+0.5t1.5y=6
The general solution of the equation is;
y(t)=e−∫(x)dx∫e∫p(x)dxQ(x)
y(t)=e−∫100+0.5t1.5dt×6∫e100+0.5t1.5dt
y(t)=−6(100+0.5t)−1.5∫(100+0.5t)1.5dt
y(t)=−6(100+0.5t)−1.52.5(100+0.5t)2..5+C
y(t)=2.5100+0.5t+C
The initial conditions are;
t=0,y=4
y(0)=4=2.5100+C
C=4−40=−36
Amount at time t is;
y(t)=2.5100+0.5t−36
Amount after t=4;
y(4)=2.5100+0.5(4)−36
y(4)=4.8lbs
Comments