Question #305609

Brine containing 3 lbs./gal of salt enters a large tank at the rate of 2 gals / min and the mixture well stirred leaves at 1.5gal / min. If the tank contains initially 100 gal of water, with 4 lbs. of dissolved salt.


a ) Find the amount of salt in the tank at any time t in minutes .


b ) Find the amount of salt in the tank after 4 minutes.

1
Expert's answer
2022-03-07T17:27:04-0500

Solution;

Let y represent the amount of salt in the tank at time t, where t is given in minutes;

dydt=RinRout\frac{dy}{dt}=R_{in}-R_{out}

Rin=3lbsgal×2galsmin=6lbs/minR_{in}=\frac{3lbs}{gal}×\frac{2gals}{min}=6lbs/min

Volume of mixture at time time t;

V(t)=100+(21.5)tV(t)=100+(2-1.5)t

V(t)=100+0.5tV(t)=100+0.5t

Rout=1.5×y100+0.5t=1.5y100+0.5tR_{out}=1.5×\frac{y}{100+0.5t}=\frac{1.5y}{100+0.5t}

Hence;

dydt=61.5y100+0.5t\frac{dy}{dt}=6-\frac{1.5y}{100+0.5t}

Rewrite;

dydt+1.5y100+0.5t=6\frac{dy}{dt}+\frac{1.5y}{100+0.5t}=6

The general solution of the equation is;

y(t)=e(x)dxep(x)dxQ(x)y(t)=e^{-\int(x)dx}\int e^{\int p(x)dx}Q(x)

y(t)=e1.5100+0.5tdt×6e1.5100+0.5tdty(t)=e^{-\int \frac{1.5}{100+0.5t}dt}×6\int e^{\frac{1.5}{100+0.5t}dt}

y(t)=6(100+0.5t)1.5(100+0.5t)1.5dty(t)=-6(100+0.5t)^{-1.5}\int(100+0.5t)^{1.5}dt

y(t)=6(100+0.5t)1.5(100+0.5t)2..52.5+Cy(t)=-6(100+0.5t)^{-1.5}\frac{(100+0.5t)^{2..5}}{2.5}+C

y(t)=100+0.5t2.5+Cy(t)=\frac{100+0.5t}{2.5}+C

The initial conditions are;

t=0,y=4t=0,y=4

y(0)=4=1002.5+Cy(0)=4=\frac{100}{2.5}+C

C=440=36C=4-40=-36

Amount at time t is;

y(t)=100+0.5t2.536y(t)=\frac{100+0.5t}{2.5}-36

Amount after t=4;

y(4)=100+0.5(4)2.536y(4)=\frac{100+0.5(4)}{2.5}-36

y(4)=4.8lbsy(4)=4.8lbs


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS