Question #302583

Find the general solution of the following differential equations using method of undetermined coefficients


(i) y''−7y'+10y =20e^5x −10

(ii) y''−2y'= x^2 +5x−2

(iii) y''+ 9y'+14y = 20+e^2x +e^−2x

(iv) y''−2y'+y =e^x+x^2

(v) y''−y'=cosx+5.


1
Expert's answer
2022-03-03T07:24:30-0500

(i)

Corresponding homogeneous differential equation


y7y+10y=0y''−7y'+10y =0

Characteristic (auxiliary) equation


r27r+10=0r^2-7r+10=0

r1=2,r2=5r_1=2,r_2=5

The general solution of the homogeneous differential equation is


yh=c1e2x+c2e5xy_h=c_1e^{2x}+c_2e^{5x}

Find the particular solution of the non homogeneous differential equation


yp=Axe5x+By_p=Axe^{5x}+B

yp=5Axe5x+Ae5xy_p'=5Axe^{5x}+Ae^{5x}

yp=25Axe5x+10Ae5xy_p''=25Axe^{5x}+10Ae^{5x}

Substitute


25Axe5x+10Ae5x35Axe5x7Ae5x25Axe^{5x}+10Ae^{5x}-35Axe^{5x}-7Ae^{5x}

+10Axe5x+10B=20e5x10+10Axe^{5x}+10B=20e^{5x}-10

A=20/3,B=1A=20/3, B=-1

yp=203xe5x1y_p=\dfrac{20}{3}xe^{5x}-1

The general solution of the non homogeneous differential equation is


y=c1e2x+c2e5x+203xe5x1y=c_1e^{2x}+c_2e^{5x}+\dfrac{20}{3}xe^{5x}-1



(ii)

Corresponding homogeneous differential equation


y2y=0y''−2y' =0

Characteristic (auxiliary) equation


r22r=0r^2-2r=0

r1=0,r2=2r_1=0,r_2=2

The general solution of the homogeneous differential equation is


yh=c1+c2e2xy_h=c_1+c_2e^{2x}

Find the particular solution of the non homogeneous differential equation


yp=Ax3+Bx2+Cxy_p=Ax^3+Bx^2+Cx

yp=3Ax2+2Bx+Cy_p'=3Ax^2+2Bx+C

yp=6Ax+2By_p''=6Ax+2B

Substitute


6Ax+2B6Ax24Bx2C6Ax+2B-6Ax^2-4Bx-2C

=x2+5x2=x^2+5x-2

6A=1-6A=1

6A4B=56A-4B=5

2B2C=22B-2C=-2

A=1/6,B=3/2,C=1/2A=-1/6, B=-3/2, C=-1/2

yp=16x332x212xy_p=-\dfrac{1}{6}x^3-\dfrac{3}{2}x^2-\dfrac{1}{2}x

The general solution of the non homogeneous differential equation is


y=c1+c2e2x16x332x212xy=c_1+c_2e^{2x}-\dfrac{1}{6}x^3-\dfrac{3}{2}x^2-\dfrac{1}{2}x



(iii)

Corresponding homogeneous differential equation


y+9y+14y=0y''+9y'+14y =0

Characteristic (auxiliary) equation


r2+9r+14=0r^2+9r+14=0

r1=7,r2=2r_1=-7,r_2=-2

The general solution of the homogeneous differential equation is


yh=c1e7x+c2e2xy_h=c_1e^{-7x}+c_2e^{-2x}

Find the particular solution of the non homogeneous differential equation


yp=Ae2x+Bxe2x+Cy_p=Ae^{2x}+Bxe^{-2x}+C




yp=2Ae2x2Bxe2x+Be2xy_p'=2Ae^{2x}-2Bxe^{-2x}+Be^{-2x}

yp=4Ae2x+4Bxe2x4Be2xy_p''=4Ae^{2x}+4Bxe^{-2x}-4Be^{-2x}

Substitute


4Ae2x+4Bxe2x4Be2x4Ae^{2x}+4Bxe^{-2x}-4Be^{-2x}

+18Ae2x18Bxe2x+9Be2x+18Ae^{2x}-18Bxe^{-2x}+9Be^{-2x}

+14Ae2x+14Bxe2x+14C+14Ae^{2x}+14Bxe^{-2x}+14C

=20+e2x+e2x=20+e^{2x} +e^{−2x}

36A=136A=1

5B=15B=1

14C=2014C=20

yp=136e2x+15xe2x+107y_p=\dfrac{1}{36}e^{2x}+\dfrac{1}{5}xe^{-2x}+\dfrac{10}{7}

The general solution of the non homogeneous differential equation is


y=c1e7x+c2e2x+136e2x+15xe2x+107y=c_1e^{-7x}+c_2e^{-2x}+\dfrac{1}{36}e^{2x}+\dfrac{1}{5}xe^{-2x}+\dfrac{10}{7}



(iv)

Corresponding homogeneous differential equation


y2y+y=0y''−2y'+y =0

Characteristic (auxiliary) equation


r22r+1=0r^2-2r+1=0

r1=r2=1r_1=r_2=1

The general solution of the homogeneous differential equation is


yh=c1ex+c2xexy_h=c_1e^x+c_2xe^x

Find the particular solution of the non homogeneous differential equation


yp=Ax2ex+Bx2+Cx+Dy_p=Ax^2e^{x}+Bx^2+Cx+D




yp=Ax2ex+2Axex+2Bx+Cy_p'=Ax^2e^x+2Axe^x+2Bx+C

yp=Ax2ex+4Axex+2Aex+2By_p''=Ax^2e^x+4Axe^x+2Ae^x+2B

Substitute


Ax2ex+4Axex+2Aex+2BAx^2e^x+4Axe^x+2Ae^x+2B

2Ax2ex4Axex4Bx2C-2Ax^2e^x-4Axe^x-4Bx-2C

+Ax2ex+Bx2+Cx+D+Ax^2e^{x}+Bx^2+Cx+D

=ex+x2=e^x+x^2

2A=12A=1

B=1B=1

C=4C=4

D=6D=6

yp=12x2exx2+4x+6y_p=\dfrac{1}{2}x^2e^{x}-x^2+4x+6

The general solution of the non homogeneous differential equation is


y=c1ex+c2xex+12x2exx2+4x+6y=c_1e^x+c_2xe^x+\dfrac{1}{2}x^2e^{x}-x^2+4x+6



(v)

Corresponding homogeneous differential equation


yy=0y''−y' =0

Characteristic (auxiliary) equation


r2r=0r^2-r=0

r1=0,r2=1r_1=0,r_2=1

The general solution of the homogeneous differential equation is


yh=c1+c2exy_h=c_1+c_2e^{x}

Find the particular solution of the non homogeneous differential equation


yp=Acosx+Bsinx+Cxy_p=A\cos x+B\sin x+Cx

y''−y'=cosx+5.

yp=Asinx+Bcosx+Cy_p'=-A\sin x+B\cos x+C

yp=AcosxBsinxy_p''=-A\cos x-B\sin x

Substitute

AcosxBsinx+Asinx+BcosxC-A\cos x-B\sin x+A\sin x+B\cos x-C

=cosx+5=\cos x+5

A=1/2,B=1/2,C=5A=-1/2, B=-1/2, C=-5

yp=12cosx12sinx5xy_p=-\dfrac{1}{2}\cos x-\dfrac{1}{2}\sin x-5x

The general solution of the non homogeneous differential equation is


y=c1+c2ex12cosx12sinx5xy=c_1+c_2e^{x}-\dfrac{1}{2}\cos x-\dfrac{1}{2}\sin x-5x




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS