Solve (D²-2DD')=x³y+e^5x
"(D^2-2DD')z=x^3y+e^{5x}"
The auxillary equation is "m^2-2m=0,\\quad m(m-2)=0,\\quad m_1=0,\\ m_2=2."
Complementary function is "F=f_1(y)+f_2(y+2x)"
1 particular integral is "\\frac{1}{D^2-2DD'}e^{5x+0y}=\\frac{1}{5^2-2\\cdot 5\\cdot 0}=\\frac{1}{25}e^{5x}"
2 particular integral is "\\frac{1}{D^2-2DD'}x^3y=\\frac{1}{D^2}\\cdot \\frac{1}{1-\\tfrac{2D'}{D}}x^3y=\\frac{1}{D^2}\\big(1+\\frac{2D'}{D}+\\big(\\frac{2D'}{D}\\big)^2+...\\big)x^3y=\\frac{1}{D^2}(x^3y+\\frac{2}{D}x^3+\\frac{4}{D^2}0+...)=\\frac{1}{D^2}x^3y+\\frac{2}{D^3}x^3=\\tfrac{1}{4\\cdot 5}x^5y+\\frac{2}{4\\cdot 5\\cdot 6}x^6=\\tfrac{1}{20}x^5y+\\tfrac{1}{60}x^6"
Answer: "z(x,y)=f_1(y)+f_2(y+2x)+\\tfrac{1}{25}e^{5x}+\\tfrac{1}{20}x^5y+\\tfrac{1}{60}x^6."
Comments
Leave a comment