(D2−2DD′)z=x3y+e5x
The auxillary equation is m2−2m=0,m(m−2)=0,m1=0, m2=2.
Complementary function is F=f1(y)+f2(y+2x)
1 particular integral is D2−2DD′1e5x+0y=52−2⋅5⋅01=251e5x
2 particular integral is D2−2DD′1x3y=D21⋅1−D2D′1x3y=D21(1+D2D′+(D2D′)2+...)x3y=D21(x3y+D2x3+D240+...)=D21x3y+D32x3=4⋅51x5y+4⋅5⋅62x6=201x5y+601x6
Answer: z(x,y)=f1(y)+f2(y+2x)+251e5x+201x5y+601x6.
Comments
Leave a comment