Answer to Question #283472 in Differential Equations for Ruchi

Question #283472

Solve (D²-2DD')=x³y+e^5x

1
Expert's answer
2021-12-30T05:44:42-0500

(D22DD)z=x3y+e5x(D^2-2DD')z=x^3y+e^{5x}

The auxillary equation is m22m=0,m(m2)=0,m1=0, m2=2.m^2-2m=0,\quad m(m-2)=0,\quad m_1=0,\ m_2=2.

Complementary function is F=f1(y)+f2(y+2x)F=f_1(y)+f_2(y+2x)


1 particular integral is 1D22DDe5x+0y=152250=125e5x\frac{1}{D^2-2DD'}e^{5x+0y}=\frac{1}{5^2-2\cdot 5\cdot 0}=\frac{1}{25}e^{5x}


2 particular integral is 1D22DDx3y=1D2112DDx3y=1D2(1+2DD+(2DD)2+...)x3y=1D2(x3y+2Dx3+4D20+...)=1D2x3y+2D3x3=145x5y+2456x6=120x5y+160x6\frac{1}{D^2-2DD'}x^3y=\frac{1}{D^2}\cdot \frac{1}{1-\tfrac{2D'}{D}}x^3y=\frac{1}{D^2}\big(1+\frac{2D'}{D}+\big(\frac{2D'}{D}\big)^2+...\big)x^3y=\frac{1}{D^2}(x^3y+\frac{2}{D}x^3+\frac{4}{D^2}0+...)=\frac{1}{D^2}x^3y+\frac{2}{D^3}x^3=\tfrac{1}{4\cdot 5}x^5y+\frac{2}{4\cdot 5\cdot 6}x^6=\tfrac{1}{20}x^5y+\tfrac{1}{60}x^6



Answer: z(x,y)=f1(y)+f2(y+2x)+125e5x+120x5y+160x6.z(x,y)=f_1(y)+f_2(y+2x)+\tfrac{1}{25}e^{5x}+\tfrac{1}{20}x^5y+\tfrac{1}{60}x^6.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment