The given differential equation can be written as;
( D 2 + 9 ) y = s e c 3 x , w h e r e D = d d x (D^2+9)y=sec3x , where\ D=\frac{d}{dx} ( D 2 + 9 ) y = sec 3 x , w h ere D = d x d
Auxiliary equation is ( D 2 + 9 ) = 0 (D^2+9)=0 ( D 2 + 9 ) = 0
⟹ D = ± 3 i \implies D=\pm3i ⟹ D = ± 3 i
Hence, C.F is,
y c = C 1 c o s 3 x + C 2 s i n 3 x y_c=C_1\ cos3x+C_2\ sin3x y c = C 1 cos 3 x + C 2 s in 3 x
Now we take y 1 = c o s 3 x , y 2 = s i n 3 x y_1=cos 3x, y_2=sin3x y 1 = cos 3 x , y 2 = s in 3 x
w = ∣ y 1 y 2 y 1 ′ y 2 ′ ∣ = ∣ c o s 3 x s i n 3 x − 3 s i n 3 x 3 c o s 3 x ∣ = 3 w=\begin{vmatrix}
y_1 & y_2 \\
y_1' & y_2'
\end{vmatrix}=\begin{vmatrix}
cos3x & sin3x \\
-3sin3x & 3cos3x
\end{vmatrix}=3 w = ∣ ∣ y 1 y 1 ′ y 2 y 2 ′ ∣ ∣ = ∣ ∣ cos 3 x − 3 s in 3 x s in 3 x 3 cos 3 x ∣ ∣ = 3
Particular integral is,
y p = − y 1 ∫ y 2 X w d x + y 2 ∫ y 1 X w d x y_p=-y_1\int \frac{y_2X}{w}dx+y_2\int \frac{y_1X}{w}dx y p = − y 1 ∫ w y 2 X d x + y 2 ∫ w y 1 X d x
= − c o s 3 x ∫ s i n 3 x s e c 3 x 3 d x + s i n 3 x ∫ c o s 3 x s e c 3 x 3 d x =-cos3x\int \frac{sin3xsec3x}{3}dx+sin3x\int \frac{cos3xsec3x}{3}dx = − cos 3 x ∫ 3 s in 3 x sec 3 x d x + s in 3 x ∫ 3 cos 3 x sec 3 x d x
= − c o s 3 x 3 ∫ t a n 3 x d x + s i n 3 x 3 ∫ d x =-\frac{cos3x}{3}\int tan3xdx+\frac{sin3x}{3}\int dx = − 3 cos 3 x ∫ t an 3 x d x + 3 s in 3 x ∫ d x
= c o s 3 x l o g ( c o s 3 x ) 9 + x s i n 3 x 3 =\frac{cos 3x\ log(cos3x)}{9}+\frac{x\ sin3x}{3} = 9 cos 3 x l o g ( cos 3 x ) + 3 x s in 3 x
Hence, the general solution is;
y(x)=y c + y p y_c+y_p y c + y p
y ( x ) = C 1 c o s 3 x + C 2 s i n 3 x + c o s 3 x l o g ( c o s 3 x ) 9 + x s i n 3 x 3 y(x)=C_1\ cos3x+C_2\ sin3x+\frac{cos 3x\ log(cos3x)}{9}+\frac{x\ sin3x}{3} y ( x ) = C 1 cos 3 x + C 2 s in 3 x + 9 cos 3 x l o g ( cos 3 x ) + 3 x s in 3 x
Comments