The given differential equation can be written as;
(D2+9)y=sec3x,where D=dxd
Auxiliary equation is (D2+9)=0
⟹D=±3i
Hence, C.F is,
yc=C1 cos3x+C2 sin3x
Now we take y1=cos3x,y2=sin3x
w=∣∣y1y1′y2y2′∣∣=∣∣cos3x−3sin3xsin3x3cos3x∣∣=3
Particular integral is,
yp=−y1∫wy2Xdx+y2∫wy1Xdx
=−cos3x∫3sin3xsec3xdx+sin3x∫3cos3xsec3xdx
=−3cos3x∫tan3xdx+3sin3x∫dx
=9cos3x log(cos3x)+3x sin3x
Hence, the general solution is;
y(x)=yc+yp
y(x)=C1 cos3x+C2 sin3x+9cos3x log(cos3x)+3x sin3x
Comments