Question #283046

solve the differential equation by the method of variation of parameters d²y/dx²+9y=sec3x


1
Expert's answer
2021-12-28T12:02:14-0500

The given differential equation can be written as;

(D2+9)y=sec3x,where D=ddx(D^2+9)y=sec3x , where\ D=\frac{d}{dx}

Auxiliary equation is (D2+9)=0(D^2+9)=0

    D=±3i\implies D=\pm3i

Hence, C.F is,

yc=C1 cos3x+C2 sin3xy_c=C_1\ cos3x+C_2\ sin3x

Now we take y1=cos3x,y2=sin3xy_1=cos 3x, y_2=sin3x

w=y1y2y1y2=cos3xsin3x3sin3x3cos3x=3w=\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}=\begin{vmatrix} cos3x & sin3x \\ -3sin3x & 3cos3x \end{vmatrix}=3

Particular integral is,

yp=y1y2Xwdx+y2y1Xwdxy_p=-y_1\int \frac{y_2X}{w}dx+y_2\int \frac{y_1X}{w}dx

=cos3xsin3xsec3x3dx+sin3xcos3xsec3x3dx=-cos3x\int \frac{sin3xsec3x}{3}dx+sin3x\int \frac{cos3xsec3x}{3}dx

=cos3x3tan3xdx+sin3x3dx=-\frac{cos3x}{3}\int tan3xdx+\frac{sin3x}{3}\int dx

=cos3x log(cos3x)9+x sin3x3=\frac{cos 3x\ log(cos3x)}{9}+\frac{x\ sin3x}{3}

Hence, the general solution is;

y(x)=yc+ypy_c+y_p

y(x)=C1 cos3x+C2 sin3x+cos3x log(cos3x)9+x sin3x3y(x)=C_1\ cos3x+C_2\ sin3x+\frac{cos 3x\ log(cos3x)}{9}+\frac{x\ sin3x}{3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS