The particular integral of (D³ - 2D²D')z = sin (x + 2y) is
Given: (D3−2D2D′)z = sin(x+2y)Let P.I. =1(D3−2D2D′) sin(x+2y)P.I. =1(D2D−2D2D′) sin(x+2y)Put D2=−1P.I. =1D((−1)−2DD′) sin(x+2y)Put DD′ = −2P.I. =1D(−1+4) sin(x+2y)P.I. =13D sin(x+2y)P.I. =− cos(x+2y)3Given\mathrm{:}\ \ \left(D^{\mathrm{3}}-\mathrm{2}D^{\mathrm{2}}D'\right)z\ \ \ =\ \mathrm{sin}\left(x+\mathrm{2}y\right) \\ Let\ \ \ P.I.\ \ =\frac{\mathrm{1}}{\left(D^{\mathrm{3}}-\mathrm{2}D^{\mathrm{2}}D'\right)}\ \mathrm{sin}\left(x+\mathrm{2}y\right) \\ \\ P.I.\ \ =\frac{\mathrm{1}}{\left(D^{\mathrm{2}}D-\mathrm{2}D^{\mathrm{2}}D'\right)}\ \mathrm{sin}\left(x+\mathrm{2}y\right) \\ \\ Put\ \ D^{\mathrm{2}}=-\mathrm{1} \\ \\ P.I.\ \ =\frac{\mathrm{1}}{D\left(\left(-\mathrm{1}\right)-\mathrm{2}DD'\right)}\ \mathrm{sin}\left(x+\mathrm{2}y\right) \\ \\ Put\ \ DD\mathrm{'}\ \ =\ -\mathrm{2} \\ \\ P.I.\ \ =\frac{\mathrm{1}}{D\left(-\mathrm{1}+\mathrm{4}\right)}\ \mathrm{sin}\left(x+\mathrm{2}y\right) \\ \\ \\ P.I.\ \ =\frac{\mathrm{1}}{\mathrm{3}D}\ \mathrm{sin}\left(x+\mathrm{2}y\right) \\ \\ P.I.\ \ =-\frac{\ \mathrm{cos}\left(x+\mathrm{2}y\right)}{\mathrm{3}}Given: (D3−2D2D′)z = sin(x+2y)Let P.I. =(D3−2D2D′)1 sin(x+2y)P.I. =(D2D−2D2D′)1 sin(x+2y)Put D2=−1P.I. =D((−1)−2DD′)1 sin(x+2y)Put DD′ = −2P.I. =D(−1+4)1 sin(x+2y)P.I. =3D1 sin(x+2y)P.I. =−3 cos(x+2y)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment