a.
y2y′+3y1=ex
z=1/y,z′=−y′/y2
−z′+z/3=ex
z=uv,z′=u′v+uv′
−(u′v+uv′)+uv/3=ex
−u′v+u(v/3−v′)=ex
v/3−v′=0
−u′v=ex
dv/v=dx/3
lnv=x/3
v=ex/3
−u′ex/3=ex
u′=−e2x/3
u=−3e2x/3/2+c
z=ex/3(−3e2x/3/2+c)
y=ex/3(−3e2x/3/2+c)1
b.
y3xy′+y21=x
z=1/y2,z′=−2y′/y3
−xz′/2+z=x
z=uv,z′=u′v+uv′
−x(u′v+uv′)+2uv=2x
−xvu′+u(2v−xv′)=2x
−vu′=2
2v−xv′=0
dv/v=2dx/x
lnv=2lnx
v=x2
−x2u′=2
du=−2dx/x2
u=2/x+c
z=x2(2/x+c)
y=x2/x+c1
c.
y′/y2+2/(xy)=−x2cosx
z=1/y,z′=−y′/y2
−z′+2z/x=−x2cosx
z=uv,z′=u′v+uv′
−(u′v+uv′)+2uv/x=−x2cosx
−u′v=−x2cosx
2v/x−v′=0
dv/v=2dx/x
v=x2
u′=cosx
u=sinx+c
z=x2(sinx+c)
y=x2(sinx+c)1
d.
x2/y−x3y′/y2=cosx
z=1/y,z′=−y′/y2
zx2+x3z′=cosx
z=uv,z′=u′v+uv′
uvx2+x3(u′v+uv′)=cosx
x3u′v=cosx
vx2+x3v′=0
dv/v=−dx/x
lnv=−lnx
v=1/x
x2u′=cosx
u=∫cosxdx/x2=−2i(Γ(−1,ix))−Γ(−1,−ix)+c
z=x1(−2i(Γ(−1,ix))−Γ(−1,−ix)+c)
y=−2i(Γ(−1,ix))−Γ(−1,−ix)+cx
where Γ(z) is gamma function:
Γ(z)=∫0∞xz−1e−xdx
Comments