(1) y′′ − 6y′ + 25y =0A.E. m2−6m+25=0m=26±36−100m=26±8i = 3±4iy=e3x(Acos(4x) + Bsin(4x))(2) y′′ +y =sin(2x)A.E. m2+1=0 m=±iyc =Acos(x)+Bsin(x)......(1)Let yp=C cos(2x) + D sin(2x) Then y′′p=−4C cos(2x) − 4D sin(2x) (−4C cos(2x) − 4D sin(2x) )+(−4C cos(2x) − 4D sin(2x) ) = sin(2x)collecting all common terms and solve ,C=0 , D=8−1yp=−8sin(2x) ..............(2)y=yc+yp=−8sin(2x) +Acos(x)+Bsin(x)y=Acos(x)+Bsin(x)−8sin(2x) (3) 6y′ −2y = xy4 , y(0)=−2y−4y′ −3y−3 = 6x (Bernoulli equation)let z= 3y−3 , z′=−3y−4y′ Then we have : z′ +3z = −2x (Linear equation)z′ +3z = −2x IF = e∫3dx = e3xze3x = ∫−2xe3x dx + Cze3x =−6xe3x+Cz=6−x+Ce−3x 3y−3 =6−x+Ce−3xbut y(0)=−2 , such that 24−1=C3y−3 =6−x−24e−3xy−3 =−2x−8e−3x(4) 2x2y′′ + 3xy′ − 15y =0 let y=Axr , y′=Arxr−1 , y′′ = Ar(r−1)xr−2 2x2(Ar(r−1)xr−2 ) + 3x(Arxr−1 ) −15Axr =02r(r−1)+3r−15=02r2+r−15=0(2r−5)(r+3)=0r=25 , r=−3y=A1x25 + A2x−3but y(1)=0 , A1+ A2=0 .....(1)and y′(1)=1 , 25A1−3 A2=1 ...(2)Solving 1 and 2 ,A1= 112 , A2=11−2 ,y= 112x25 − 112x−3
Comments