a)
y k − y k − 1 + 2 y k − 2 = k 2 + 5 k y_k - y_{k-1} + 2y_{k-2} = k² + 5k y k − y k − 1 + 2 y k − 2 = k 2 + 5 k
charasteristic equation:
r 2 − r + 2 = 0 r^2-r+2=0 r 2 − r + 2 = 0
r = 1 ± i 7 2 r=\frac{1\pm i \sqrt 7}{2} r = 2 1 ± i 7
y h = r k ( a c o s ( k θ ) + b s i n ( k θ ) ) y_h=r^k(acos(k\theta)+bsin(k\theta)) y h = r k ( a cos ( k θ ) + b s in ( k θ ))
r = ( 1 / 2 ) 2 + ( 7 / 2 ) 2 = 2 r=\sqrt{(1/2)^2+(\sqrt 7/2)^2}=\sqrt 2 r = ( 1/2 ) 2 + ( 7 /2 ) 2 = 2
θ = a r c c o s ( 1 / ( 2 2 ) ) = 1.2 \theta=arccos(1/(2\sqrt 2))=1.2 θ = a rccos ( 1/ ( 2 2 )) = 1.2 rad
y h = ( 2 ) k ( a c o s ( 1.2 k ) + b s i n ( 1.2 k ) ) y_h=(\sqrt 2)^k(acos(1.2k)+bsin(1.2k)) y h = ( 2 ) k ( a cos ( 1.2 k ) + b s in ( 1.2 k ))
y t = A k 2 + B k + C y_t=Ak^2+Bk+C y t = A k 2 + B k + C
A k 2 + B k + C + A ( k − 1 ) 2 + B ( k − 1 ) + C + 2 A ( k − 2 ) 2 + 2 B ( k − 2 ) + 2 C = Ak^2+Bk+C+A(k-1)^2+B(k-1)+C+2A(k-2)^2+2B(k-2)+2C= A k 2 + B k + C + A ( k − 1 ) 2 + B ( k − 1 ) + C + 2 A ( k − 2 ) 2 + 2 B ( k − 2 ) + 2 C =
= k 2 + 5 k =k^2+5k = k 2 + 5 k
4 A = 1 ⟹ A = 1 / 4 4A=1\implies A=1/4 4 A = 1 ⟹ A = 1/4
4 B − 10 A = 5 ⟹ B = 1.875 4B-10A=5\implies B=1.875 4 B − 10 A = 5 ⟹ B = 1.875
4 C + 9 A − 5 B = 0 ⟹ C = 1.78 4C+9A-5B=0\implies C=1.78 4 C + 9 A − 5 B = 0 ⟹ C = 1.78
y k = ( 2 ) k ( a c o s ( 1.2 k ) + b s i n ( 1.2 k ) ) + 0.25 k 2 + 1.875 k + 1.78 y_k=(\sqrt 2)^k(acos(1.2k)+bsin(1.2k))+0.25k^2+1.875k+1.78 y k = ( 2 ) k ( a cos ( 1.2 k ) + b s in ( 1.2 k )) + 0.25 k 2 + 1.875 k + 1.78
b)
y k + 2 − 4 y k + 1 + y k = 3 k + 2 k y_{k+2} - 4y_{k+1} + y_k = 3k +2^k y k + 2 − 4 y k + 1 + y k = 3 k + 2 k
charasteristic equation:
r 2 − 4 r + 1 = 0 r^2-4r+1=0 r 2 − 4 r + 1 = 0
r = 2 ± 3 r=2\pm \sqrt 3 r = 2 ± 3
y h = a ( 2 − 3 ) k + b ( 2 + 3 ) k y_h=a(2-\sqrt 3)^k+b(2+\sqrt 3)^k y h = a ( 2 − 3 ) k + b ( 2 + 3 ) k
y t 1 = A k + B y_{t1}=Ak+B y t 1 = A k + B
A ( k + 2 ) + B − 4 ( A ( k + 1 ) + B ) + A k + B = 3 k A(k+2)+B-4(A(k+1)+B)+Ak+B=3k A ( k + 2 ) + B − 4 ( A ( k + 1 ) + B ) + A k + B = 3 k
− 2 A = 3 ⟹ A = − 1.5 -2A=3\implies A=-1.5 − 2 A = 3 ⟹ A = − 1.5
− 2 A − 2 B = 0 ⟹ B = 1.5 -2A-2B=0\implies B=1.5 − 2 A − 2 B = 0 ⟹ B = 1.5
y t 2 = A 2 k y_{t2}=A2^k y t 2 = A 2 k
A 2 k + 2 − 4 A 2 k + 1 + A 2 k = 2 k A2^{k+2}-4A2^{k+1}+A2^k=2^k A 2 k + 2 − 4 A 2 k + 1 + A 2 k = 2 k
4 A − 8 A + A = 1 4A-8A+A=1 4 A − 8 A + A = 1
A = − 1 / 3 A=-1/3 A = − 1/3
y k = a ( 2 − 3 ) k + b ( 2 + 3 ) k − 1.5 k + 1.5 − 2 k / 3 y_k=a(2-\sqrt 3)^k+b(2+\sqrt 3)^k-1.5k+1.5-2^k/3 y k = a ( 2 − 3 ) k + b ( 2 + 3 ) k − 1.5 k + 1.5 − 2 k /3
Comments