a)
βTβTmβdTβ=kdt
ln(TmββT)=kt+c
T=Tmββekt+c=100βekt+c
T(0)=100βec=T0β
c=ln(100βT0β)
ln65β€cβ€ln70
T(5)=100βec+5k=T1β
k=(ln(100βT1β)βc)/5
(ln50βln70)/5β€kβ€(ln60βln65)/5
β0.067β€kβ€β0.016
100β70eβ0.016tβ€Tβ€100β65eβ0.067t
reason for the selection of the method:
this is method to find exact value of variable
temperature of the metal bar after 100 seconds:
100β70eβ0.016β
100β€T(100)β€100β65eβ0.067β
100
85.87β€T(100)β€99.92
b)
Euler method
T(0)=30
Tβ²(t)=0.067(100βT)=f(t,T)
Tnβ=Tnβ1β+10f(tnβ1β,Tnβ1β)
T10β=T(100)=99.8989Β°C
error = 99.92β99.8989=0.0211
Runge-Kutta 2 method:
k2β=10f(t0β+10,T0β+k1β)
k1β=10f(t0β,T0β)=(10)f(0,30)=(10)β
(4.69)=46.9
k2β=10f(t0β+10,T0β+k1β)=(10)f(10,76.9)=(10)β
(1.5477)=15.477
T1β=T0β+(k1β+k2β)/2=30+31.1885=61.1885
T(10)=61.1885
........................
T(100)=99.8078Β°C
error = 99.92β99.8078=0.1122
Runge-Kutta 3 method:
k1β=10f(t0β,T0β)=(10)f(0,30)=(10)β
(4.69)=46.9
k2β=10f(t0β+10/2,T0β+k1β/2)=(10)f(5,53.45)=(10)β
(3.1188)=31.1885
k3β=10f(t0β+10,T0β+2k2ββk1β)=(10)f(10,45.477)=(10)β
(3.653)=36.5304
T1β=T0β+(k1β+4k2β+k3β)/6
T1β=30+[46.9+4(31.1885)+(36.5304)]/6=64.6974
T(10)=64.6974
...................................................
T(100)=99.9255Β°C
error = 99.9255β99.92=0.0055
Minimal error is for Runge-Kutta 3 method, so this is the best numerical method to compute the temperature.
Comments
Leave a comment