a)
−T−TmdT=kdt
ln(Tm−T)=kt+c
T=Tm−ekt+c=100−ekt+c
T(0)=100−ec=T0
c=ln(100−T0)
ln65≤c≤ln70
T(5)=100−ec+5k=T1
k=(ln(100−T1)−c)/5
(ln50−ln70)/5≤k≤(ln60−ln65)/5
−0.067≤k≤−0.016
100−70e−0.016t≤T≤100−65e−0.067t
reason for the selection of the method:
this is method to find exact value of variable
temperature of the metal bar after 100 seconds:
100−70e−0.016⋅100≤T(100)≤100−65e−0.067⋅100
85.87≤T(100)≤99.92
b)
Euler method
T(0)=30
T′(t)=0.067(100−T)=f(t,T)
Tn=Tn−1+10f(tn−1,Tn−1)
T10=T(100)=99.8989°C
error = 99.92−99.8989=0.0211
Runge-Kutta 2 method:
k2=10f(t0+10,T0+k1)
k1=10f(t0,T0)=(10)f(0,30)=(10)⋅(4.69)=46.9
k2=10f(t0+10,T0+k1)=(10)f(10,76.9)=(10)⋅(1.5477)=15.477
T1=T0+(k1+k2)/2=30+31.1885=61.1885
T(10)=61.1885
........................
T(100)=99.8078°C
error = 99.92−99.8078=0.1122
Runge-Kutta 3 method:
k1=10f(t0,T0)=(10)f(0,30)=(10)⋅(4.69)=46.9
k2=10f(t0+10/2,T0+k1/2)=(10)f(5,53.45)=(10)⋅(3.1188)=31.1885
k3=10f(t0+10,T0+2k2−k1)=(10)f(10,45.477)=(10)⋅(3.653)=36.5304
T1=T0+(k1+4k2+k3)/6
T1=30+[46.9+4(31.1885)+(36.5304)]/6=64.6974
T(10)=64.6974
...................................................
T(100)=99.9255°C
error = 99.9255−99.92=0.0055
Minimal error is for Runge-Kutta 3 method, so this is the best numerical method to compute the temperature.
Comments