1.
{lnx,lnx2}
{lnx,2lnx},x>0
(lnx)′=1/x,(ln(x2))′=2/x
W(lnx,lnx2)=∣∣lnx1/xlnx22/x∣∣
=(2/x)lnx−(1/x)lnx2
=(2/x)lnx−(2/x)lnx=0 lnx,lnx2 are linearly dependent on (0,∞).
2.
{2+x,1−x,3+x2}
(2+x)′=1,(1−x)′=−1,(3+x2)′=2x
(2+x)′′=0,(1−x)′′=0,(3+x2)′′=2
W(2+x,1−x,3+x2)=∣∣2+x101−x−103+x22x2∣∣
=2∣∣2+x11−x−1∣∣=2(−2−x−1+x)
=−6=0 2+x,1−x,3+x2 are linearly independent on (−∞,∞).
Comments