1.
{ ln x , ln x 2 } \{\ln x, \ln x^2\} { ln x , ln x 2 }
{ ln x , 2 ln x } , x > 0 \{\ln x, 2\ln x\}, x>0 { ln x , 2 ln x } , x > 0
( ln x ) ′ = 1 / x , ( ln ( x 2 ) ) ′ = 2 / x (\ln x)'=1/x, (\ln(x^2))'=2/x ( ln x ) ′ = 1/ x , ( ln ( x 2 ) ) ′ = 2/ x
W ( ln x , ln x 2 ) = ∣ ln x ln x 2 1 / x 2 / x ∣ W(\ln x, \ln x^2)=\begin{vmatrix}
\ln x & \ln x^2 \\
1/x & 2/x
\end{vmatrix} W ( ln x , ln x 2 ) = ∣ ∣ ln x 1/ x ln x 2 2/ x ∣ ∣
= ( 2 / x ) ln x − ( 1 / x ) ln x 2 =(2/x)\ln x-(1/x)\ln x^2 = ( 2/ x ) ln x − ( 1/ x ) ln x 2
= ( 2 / x ) ln x − ( 2 / x ) ln x = 0 =(2/x)\ln x-(2/x)\ln x=0 = ( 2/ x ) ln x − ( 2/ x ) ln x = 0 ln x , ln x 2 \ln x, \ln x^2 ln x , ln x 2 are linearly dependent on ( 0 , ∞ ) . (0, \infin). ( 0 , ∞ ) .
2.
{ 2 + x , 1 − x , 3 + x 2 } \{2+x, 1-x, 3+x^2\} { 2 + x , 1 − x , 3 + x 2 }
( 2 + x ) ′ = 1 , ( 1 − x ) ′ = − 1 , ( 3 + x 2 ) ′ = 2 x (2+x)'=1,(1-x)'=-1, (3+x^2)'=2x ( 2 + x ) ′ = 1 , ( 1 − x ) ′ = − 1 , ( 3 + x 2 ) ′ = 2 x
( 2 + x ) ′ ′ = 0 , ( 1 − x ) ′ ′ = 0 , ( 3 + x 2 ) ′ ′ = 2 (2+x)''=0,(1-x)''=0, (3+x^2)''=2 ( 2 + x ) ′′ = 0 , ( 1 − x ) ′′ = 0 , ( 3 + x 2 ) ′′ = 2
W ( 2 + x , 1 − x , 3 + x 2 ) = ∣ 2 + x 1 − x 3 + x 2 1 − 1 2 x 0 0 2 ∣ W(2+x, 1-x,3+x^2)=\begin{vmatrix}
2+x & 1-x & 3+x^2 \\
1 & -1 & 2x \\
0 & 0 & 2
\end{vmatrix} W ( 2 + x , 1 − x , 3 + x 2 ) = ∣ ∣ 2 + x 1 0 1 − x − 1 0 3 + x 2 2 x 2 ∣ ∣
= 2 ∣ 2 + x 1 − x 1 − 1 ∣ = 2 ( − 2 − x − 1 + x ) =2\begin{vmatrix}
2+x & 1-x \\
1 & -1
\end{vmatrix}=2(-2-x-1+x) = 2 ∣ ∣ 2 + x 1 1 − x − 1 ∣ ∣ = 2 ( − 2 − x − 1 + x )
= − 6 ≠ 0 =-6\not=0 = − 6 = 0 2 + x , 1 − x , 3 + x 2 2+x, 1-x, 3+x^2 2 + x , 1 − x , 3 + x 2 are linearly independent on ( − ∞ , ∞ ) . (-\infin, \infin). ( − ∞ , ∞ ) .
Comments