For a given set of constants Ξ±, Ξ², and Ξ³ the functions
Ζ (x, y) =
7π₯
πΌπ¦
2π₯π½
and Δ‘ (x, y) =
3π₯
π½βπΎ
π₯π½βπ¦2
are homogeneous of degree 2 and 1 respectively. Determine the values for Ξ±, Ξ², and Ξ³.
An equation of the formΒ f(x,y)=0Β is said to be the homogeneous equation of degreeΒ n, whereΒ nΒ is a positive integer, and if for some real numberΒ k, we have f(kx,ky)=knf(x,y)
"f(x,y)=\\frac{7x^{\\alpha}y}{2x^{\\beta}}"
"f(kx,ky)=k^2f(x,y)"
"\\frac{7k^{\\alpha}x^{\\alpha}ky}{2k^{\\beta}x^{\\beta}}=\\frac{7k^2x^{\\alpha}y}{2x^{\\beta}}"
"k^{\\alpha-\\beta+1}=k^2"
"\\alpha-\\beta=1"
"\u0121 (x, y) =\\frac{3x^{\\beta-\\gamma}}{x^{\\beta}-y^2}"
"\\frac{3k^{\\beta-\\gamma}x^{\\beta-\\gamma}}{k^{\\beta}x^{\\beta}-k^2y^2}=\\frac{3kx^{\\beta-\\gamma}}{x^{\\beta}-y^2}"
"k^{\\beta-\\gamma}=k(k^{\\beta}-k^2)"
"k^{\\beta-\\gamma-1}=k^{\\beta}-k^2"
Comments
Leave a comment