Question #272935

For a given set of constants α, β, and γ the functions


ƒ (x, y) =


7𝑥


𝛼𝑦


2𝑥𝛽


and ġ (x, y) =


3𝑥


𝛽−𝛾


𝑥𝛽−𝑦2


are homogeneous of degree 2 and 1 respectively. Determine the values for α, β, and γ.


1
Expert's answer
2021-11-29T17:11:25-0500

An equation of the form f(x,y)=0 is said to be the homogeneous equation of degree n, where n is a positive integer, and if for some real number k, we have f(kx,ky)=knf(x,y)


f(x,y)=7xαy2xβf(x,y)=\frac{7x^{\alpha}y}{2x^{\beta}}

f(kx,ky)=k2f(x,y)f(kx,ky)=k^2f(x,y)

7kαxαky2kβxβ=7k2xαy2xβ\frac{7k^{\alpha}x^{\alpha}ky}{2k^{\beta}x^{\beta}}=\frac{7k^2x^{\alpha}y}{2x^{\beta}}


kαβ+1=k2k^{\alpha-\beta+1}=k^2

αβ=1\alpha-\beta=1


g˙(x,y)=3xβγxβy2ġ (x, y) =\frac{3x^{\beta-\gamma}}{x^{\beta}-y^2}


3kβγxβγkβxβk2y2=3kxβγxβy2\frac{3k^{\beta-\gamma}x^{\beta-\gamma}}{k^{\beta}x^{\beta}-k^2y^2}=\frac{3kx^{\beta-\gamma}}{x^{\beta}-y^2}


kβγ=k(kβk2)k^{\beta-\gamma}=k(k^{\beta}-k^2)

kβγ1=kβk2k^{\beta-\gamma-1}=k^{\beta}-k^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS