Question #272757

Solve the linear partial differential equation (D⁴+D'⁴)=0

1
Expert's answer
2021-11-29T15:42:04-0500

Solution;

Given;

D4+D4=0D^4+D'^4=0

The auxiliary equation is;

m4+1=0m^4+1=0

m4=1=eiπm^4=-1=e^{iπ} (By Euler's formula)

By De Moivres theorem;

m4=eiπ+2nπm^4=e^{iπ+2nπ}

m=eiπ(2n+14)m=e^{iπ(\frac{2n+1}{4})} In which n=0,1,2,3....

When;

n=0;

m=eiπ4=cosπ4+isinπ4=12+i12m=e^{i\fracπ4}=cos\fracπ4+isin\fracπ4=\frac{1}{\sqrt2}+i\frac{1}{\sqrt2}

n=1;

m=ei(3π4)=cos3π4+isin3π4=12+i12m=e^{i(\frac{3π}{4})}=cos\frac{3π}{4}+isin\frac{3π}{4}=\frac{-1}{\sqrt2}+i\frac{1}{\sqrt2}

n=2;

m=ei(5π4)=cos5π4+isin5π4=12i12m=e^{i(\frac{5π}{4})}=cos\frac{5π}{4}+i sin\frac{5π}{4}=\frac{-1}{\sqrt2}-i\frac{1}{\sqrt2}

n=3;

m=ei(7π4)=cos7π4+isin7π4=12i12m=e^{i (\frac{7π}{4})}=cos\frac{7π}{4}+i sin\frac{7π}{4}=\frac{1}{\sqrt2}-i\frac{1}{\sqrt2}

Therefore,you can see that the roots are;

m=12+i12m=\frac{1}{\sqrt2}_-^+i\frac{1}{\sqrt2} and 12+12-\frac{1}{\sqrt2}_-^+\frac{1}{\sqrt2}

Therefore,the complementary solution is;

C.F=e12x[c1cos12x+c2sin12x]+e12[c3cos12x+c4sin12x]C.F=e^{\frac{1}{\sqrt2}x}[c_1cos\frac{1}{\sqrt2}x+c_2sin\frac{1}{\sqrt2}x]+e^{\frac{-1}{\sqrt2}}[c_3cos\frac{1}{\sqrt2}x+c_4sin\frac{1}{\sqrt2}x]





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS