Solution;
Given;
D4+D′4=0
The auxiliary equation is;
m4+1=0
m4=−1=eiπ (By Euler's formula)
By De Moivres theorem;
m4=eiπ+2nπ
m=eiπ(42n+1) In which n=0,1,2,3....
When;
n=0;
m=ei4π=cos4π+isin4π=21+i21
n=1;
m=ei(43π)=cos43π+isin43π=2−1+i21
n=2;
m=ei(45π)=cos45π+isin45π=2−1−i21
n=3;
m=ei(47π)=cos47π+isin47π=21−i21
Therefore,you can see that the roots are;
m=21−+i21 and −21−+21
Therefore,the complementary solution is;
C.F=e21x[c1cos21x+c2sin21x]+e2−1[c3cos21x+c4sin21x]
Comments