Question #272661

With the use of reduction of order for differential


equations, reduce the following to first order and


solve.


(i) 𝑦


′′ + 𝑒


𝑦𝑦


′3 = 0,


(ii) 𝑥𝑦


′′ + 2𝑦


′ + 𝑥𝑦 = 0, 𝑦1 =


sin 𝑥


𝑥


,


(iii) (1 − 𝑥


2


)𝑦


′′ − 2𝑥𝑦


′ + 2𝑦 = 0, 𝑦1 = 𝑥,


(iv) 4𝑥


2𝑦


′′ − 3𝑦 = 0, 𝑦(1) = 3, 𝑦



(1) = 2.5


1
Expert's answer
2021-11-29T13:57:18-0500

i)

𝑦+𝑒𝑦(𝑦)3=0𝑦'' + 𝑒^𝑦(𝑦')^3 = 0

y=uy'=u

y=uuy''=uu'


uu+eyu3=0uu'+e^yu^3=0

u+eyu2=0u'+e^yu^2=0


du/u2=eydydu/u^2=-e^ydy


1/u=ey+c1/u=e^y+c


\frac{}{} dx=(ey+c)dydx=(e^y+c)dy


x=ey+cy+c1x=e^y+cy+c_1


ii)

y+p(x)y+q(x)y=0y''+p(x)y'+q(x)y=0


y+2y/x+y=0y''+2y'/x+y=0


y2=v(x)y1=vsinx/xy_2=v(x)y_1=vsinx/x


v(x)=c1y12ep(x)dxdx=cx2sin2xe2lnxdx=v(x)=c\int\frac{1}{y_1^2}e^{-\int p(x)dx}dx=c\int\frac{x^2}{sin^2x}e^{-2lnx}dx=


=c1sin2xdx=c(cotx)+k=c\int\frac{1}{sin^2x}dx=c(-cotx)+k


v(x)=cotxv(x)=cotx

y2=cotxsinx/x=cosx/xy_2=cotxsinx/x=cosx/x


y(x)=c1sinx/x+c2cosx/xy(x)=c_1sinx/x+c_2cosx/x


iii)

𝑦2𝑥𝑦/(1𝑥2)+2𝑦/(1𝑥2)=0𝑦 ''− 2𝑥𝑦 '/(1 − 𝑥 ^2 )+ 2𝑦/(1 − 𝑥^ 2 ) = 0


v(x)=c1y12ep(x)dxdx=c1x2eln(x21)dx=c1x2(x21)dx=v(x)=c\int\frac{1}{y_1^2}e^{-\int p(x)dx}dx=c\int\frac{1}{x^2}e^{-ln(x^2-1)}dx=c\int\frac{1}{x^2(x^2-1)}dx=


=c(lnx1x+12+1x)+k=c(\frac{ln\frac{x-1}{x+1}}{2}+\frac{1}{x})+k


v(x)=lnx1x+12+1xv(x)=\frac{ln\frac{x-1}{x+1}}{2}+\frac{1}{x}


y2=x(lnx1x+12+1x)=xlnx1x+12+1y_2=x(\frac{ln\frac{x-1}{x+1}}{2}+\frac{1}{x})=\frac{xln\frac{x-1}{x+1}}{2}+1


y(x)=c1x+c2(xlnx1x+12+1)y(x)=c_1x+c_2(\frac{xln\frac{x-1}{x+1}}{2}+1)


iv)

y=xky=x^k

(xk)=k(k1)xk2(x^k)''=k(k-1)x^{k-2}

(4k24k3)xk=0(4k^2-4k-3)x^k=0

4k24k3=04k^2-4k-3=0

k1=1/2,k2=3/2k_1=-1/2,k_2=3/2


y1=c1/x,y2=c2x3/2y_1=c_1/\sqrt x,y_2=c_2x^{3/2}


y(x)=y1+y2=c1/x+c2x3/2y(x)=y_1+y_2=c_1/\sqrt x+c_2x^{3/2}


y(1)=c1+c2=3y(1)=c_1+c_2=3


y(x)=c1/(2xx)+3c2x1/2/2y'(x)=-c_1/(2x\sqrt x)+3c_2x^{1/2}/2


𝑦(1)=c1/2+3c2/2=2.5𝑦 '(1) =-c_1/2+3c_2/2= 2.5


c23+3c2=5c_2-3+3c_2=5

c2=2,c1=3c2=1c_2=2,c_1=3-c_2=1


y(x)=1/x+2x3/2y(x)=1/\sqrt x+2x^{3/2}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS