Solution;
For the complementary solutions;
m3+m2−m−1=0
m(m2−1)+(m2−1)=0
(m−1)(m2−1)=0
(m+1)(m+1)(m−1)=0
m=−1,−1,1
The complementary function we have;
C.F=[xΦ1(y−x)+Φ2(y−x)]e−x+Φ3(y+x)ex
The particular Integral;
P.I=f(D,D′)1excos2y
f(D,D′)=D3+D2D′−D(D′)2−(D′)3
From excos2y Coefficient of x is 1 and
that of y is 2;
f(1,2)=13+(12×2)−(1×22)−(2)3=−9
Hence;
P.I=−91excos2y
Hence the general solution of the equation is;
z=[xΦ1(y−x)+Φ2(y−x)]e−x+Φ3(y+x)ex−91excos2y
Comments
Leave a comment