dx/(z^2+2y)=dy/(z^2+2x)=dz/-z
dx−dy2y−2x=dz−z\frac{dx-dy}{2y-2x}=\frac{dz}{-z}2y−2xdx−dy=−zdz
ln(x−y)/2=lnz+lnc1′ln(x-y)/2=lnz+lnc'_1ln(x−y)/2=lnz+lnc1′
c1=x−yz2c_1=\frac{x-y}{z^2}c1=z2x−y
xdx−ydyz2(x−y)=xdx−ydyc1z4=dz−z\frac{xdx-ydy}{z^2(x-y)}=\frac{xdx-ydy}{c_1z^4}=\frac{dz}{-z}z2(x−y)xdx−ydy=c1z4xdx−ydy=−zdz
x2−y2=−2c1z4/4=−c1z4/2x^2-y^2=-2c_1z^4/4=-c_1z^4/2x2−y2=−2c1z4/4=−c1z4/2
c2=−c1/2=x2−y2z4c_2=-c_1/2=\frac{x^2-y^2}{z^4}c2=−c1/2=z4x2−y2
F(c1,c2)=F(x−yz2,x2−y2z4)=0F(c_1,c_2)=F(\frac{x-y}{z^2}, \frac{x^2-y^2}{z^4})=0F(c1,c2)=F(z2x−y,z4x2−y2)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment