Given
U t t = 2 c U x x δ 2 U δ x 2 = 1 2 c δ 2 u δ t 2 U ( x , 0 ) = f ( x ) = c o s x − 1 U ( x , 0 ) = g ( x ) = 0 a n d U ( 0 , t ) = 0 , U ( 2 π , t ) = 0 0 ≤ X ≤ 2 U_{tt}=2c\space U{xx}\\\frac{\delta ^2U}{\delta x^2}=\frac{1}{2c}\frac{\delta ^2 u}{\delta t^2}\\U(x,0)=f(x)=cos \space x-1\\U(x,0)=g(x)=0\\and\\U(0,t)=0,U(2\pi,t)=0\\0
≤ X ≤ 2 U tt = 2 c U xx δ x 2 δ 2 U = 2 c 1 δ t 2 δ 2 u U ( x , 0 ) = f ( x ) = cos x − 1 U ( x , 0 ) = g ( x ) = 0 an d U ( 0 , t ) = 0 , U ( 2 π , t ) = 0 0 ≤ X ≤ 2
We know that
U ( x , t ) = 1 2 [ f ( x + c t ) − f ( x − c t ) ] + 1 2 c ∫ x − c t x + c t g ( s ) d s U(x,t)=\frac{1}{2}[f(x+ct)-f(x-ct)]+\frac{1}{2c}\int^{x+ct}_{x-ct}g(s)ds U ( x , t ) = 2 1 [ f ( x + c t ) − f ( x − c t )] + 2 c 1 ∫ x − c t x + c t g ( s ) d s
U ( x , t ) = 1 2 [ c o s ( x + 2 c t ) − 1 − c o s ( x − 2 c t ) + 1 ] + 1 2 2 c ∫ x − 2 c t x + 2 c t 0 d s U(x,t)=\frac{1}{2}[cos(x+\sqrt{2ct})-1-cos (x-\sqrt{2ct})+1]+\frac{1}{2\sqrt{2c}}\int ^{x+\sqrt{2ct}}_{x-\sqrt{2ct}}0\space ds U ( x , t ) = 2 1 [ cos ( x + 2 c t ) − 1 − cos ( x − 2 c t ) + 1 ] + 2 2 c 1 ∫ x − 2 c t x + 2 c t 0 d s
U ( x , t ) = 1 2 [ c o s ( x + 2 c t ) − c o s ( x − 2 c t ) + 1 ] U(x,t)=\frac{1}{2}[cos(x+\sqrt{2ct})-cos (x-\sqrt{2ct})+1] U ( x , t ) = 2 1 [ cos ( x + 2 c t ) − cos ( x − 2 c t ) + 1 ]
and
U ( 0 , t ) = 0 a n d U ( 2 π , t ) = 0 0 = 0 U(0,t)=0\\and\\U(2\pi,t)=0\\0=0 U ( 0 , t ) = 0 an d U ( 2 π , t ) = 0 0 = 0
we know that c o s θ = c o s θ cos\theta=cos \theta cos θ = cos θ
since verified
and U ( 2 π , t ) = 0 U(2\pi,t)=0 U ( 2 π , t ) = 0
0 = 1 2 [ c o s ( 2 π + 2 c t ) − c o s ( 2 π − 2 c t ) ] = 1 2 [ c o s ( 2 c t ) − c o s ( − 2 c t ) ] 0 = 0 0=\frac{1}{2}[cos(2\pi+\sqrt{2ct})-cos(2\pi-\sqrt{2ct})]\\=\frac{1}{2}[cos(\sqrt{2ct})-cos(-\sqrt{2ct})]\\0=0 0 = 2 1 [ cos ( 2 π + 2 c t ) − cos ( 2 π − 2 c t )] = 2 1 [ cos ( 2 c t ) − cos ( − 2 c t )] 0 = 0
verified
hence solution is
U ( x , t ) = 1 2 [ c o s ( x + 2 c t ) − c o s ( x − 2 c t ) ] U(x,t)=\frac{1}{2}[cos(x+\sqrt{2ct})-cos (x-\sqrt{2ct})] U ( x , t ) = 2 1 [ cos ( x + 2 c t ) − cos ( x − 2 c t )]
Comments