Question #257882

Solve the following B.V.P.

𝑢𝑡𝑡 = 𝑐 2𝑢𝑥𝑥; { 𝑢(𝑥, 0) = cos 𝑥 − 1, 𝑢𝑡 (𝑥, 0) = 0 𝑢(0,𝑡) = 0, 𝑢(2𝜋,𝑡) = 0 0 ≤ 𝑥 ≤ 2�


1
Expert's answer
2021-11-01T11:48:57-0400

Given

Utt=2c Uxxδ2Uδx2=12cδ2uδt2U(x,0)=f(x)=cos x1U(x,0)=g(x)=0andU(0,t)=0,U(2π,t)=00X2U_{tt}=2c\space U{xx}\\\frac{\delta ^2U}{\delta x^2}=\frac{1}{2c}\frac{\delta ^2 u}{\delta t^2}\\U(x,0)=f(x)=cos \space x-1\\U(x,0)=g(x)=0\\and\\U(0,t)=0,U(2\pi,t)=0\\0 ≤ X ≤ 2

We know that

U(x,t)=12[f(x+ct)f(xct)]+12cxctx+ctg(s)dsU(x,t)=\frac{1}{2}[f(x+ct)-f(x-ct)]+\frac{1}{2c}\int^{x+ct}_{x-ct}g(s)ds

U(x,t)=12[cos(x+2ct)1cos(x2ct)+1]+122cx2ctx+2ct0 dsU(x,t)=\frac{1}{2}[cos(x+\sqrt{2ct})-1-cos (x-\sqrt{2ct})+1]+\frac{1}{2\sqrt{2c}}\int ^{x+\sqrt{2ct}}_{x-\sqrt{2ct}}0\space ds

U(x,t)=12[cos(x+2ct)cos(x2ct)+1]U(x,t)=\frac{1}{2}[cos(x+\sqrt{2ct})-cos (x-\sqrt{2ct})+1]

and

U(0,t)=0andU(2π,t)=00=0U(0,t)=0\\and\\U(2\pi,t)=0\\0=0

we know that cosθ=cosθcos\theta=cos \theta

since verified

and U(2π,t)=0U(2\pi,t)=0

0=12[cos(2π+2ct)cos(2π2ct)]=12[cos(2ct)cos(2ct)]0=00=\frac{1}{2}[cos(2\pi+\sqrt{2ct})-cos(2\pi-\sqrt{2ct})]\\=\frac{1}{2}[cos(\sqrt{2ct})-cos(-\sqrt{2ct})]\\0=0

verified

hence solution is

U(x,t)=12[cos(x+2ct)cos(x2ct)]U(x,t)=\frac{1}{2}[cos(x+\sqrt{2ct})-cos (x-\sqrt{2ct})]


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS