Use linear substitution to solve the following first-order differential equation
𝑑𝑦/𝑑𝑥=(2𝑥+𝑦)/(2𝑥+𝑦+1)
1
Expert's answer
2021-11-02T15:32:59-0400
dxdy=2x+y+12x+y...(1)By substitution letv=2x+y then dxdv=2+dxdy so dxdy=dxdv−2∴From (1) we getdxdv−2=v+2vdxdv=(v+1)v+2=(v+1)v+2(v+1)dxdv=(v+1)3v+2∴(3v+2)(v+1)dv=dxIntegrating both sides∫(3v+2)(v+1)dv=∫dx+c31∫[3v+23v+2+1]dv=x+c⇒31∫[1+(3v+2)1]dv=x+c⇒∫1dv+31∫(v+32)dv=3x+c⇒v+31ln∣v+32∣=3x+cPuttingv=2x+ywe have2x+y+31ln∣∣2x+y+32∣∣=3x+c⇒y+31ln∣∣2x+y+32∣∣=x+C⇒y+31ln∣∣2x+y+32∣∣−x=C
Comments