Solution.
y′′+y=sin2(x) 1) Solve linear equation with constant coefficients
y′′+y=0.
Сompose a characteristic equation λ2+1=0.
From here λ=i, or λ=−i.
So, we have
y=C1sinx+C2cosx.2) Find particular solution by the method of undefined coefficients. Such as sin2(x)=21−cos2x, particular solution for the right side equal to the sum of particular solutions for 21 and −2cos(2x).
Solution for 21 is:
y=A. Then y′′=0. Substitute in original equation A=21. So,
y=21.
Solution for −2cos(2x) is:
y=Bsin(2x)+Dcos(2x). Then y′′=−4Bsin(2x)−4Dcos(2x). Substitute in original equation −6Bsin(2x)−6Dcos(2x)=−cos(2x). From here B=0,D=61. So,
y=6cos(2x).
3)
y=C1sinx+C2cosx+21+6cos(2x).Answer. y=C1sinx+C2cosx+21+6cos(2x).
Comments
Leave a comment