Answer to Question #244970 in Differential Equations for sam

Question #244970

5. Find the general solution to the differential equation y'' + y= sin2 x


1
Expert's answer
2021-10-01T16:25:34-0400

Solution.


y+y=sin2(x)y''+y=\sin^2(x)

1) Solve linear equation with constant coefficients

y+y=0.y''+y=0.

Сompose a characteristic equation λ2+1=0.\lambda^2+1=0.

From here λ=i,\lambda=i, or λ=i.\lambda=-i.

So, we have


y=C1sinx+C2cosx.y=C_1\sin x+C_2\cos x.

2) Find particular solution by the method of undefined coefficients. Such as sin2(x)=1cos2x2,\sin^2(x)=\frac{1-\cos{2x}}{2}, particular solution for the right side equal to the sum of particular solutions for 12\frac{1}{2} and cos(2x)2.-\frac{\cos(2x)}{2}.

Solution for 12\frac{1}{2} is:

y=A.y=A. Then y=0.y''=0. Substitute in original equation A=12.A=\frac{1}{2}. So,


y=12.y=\frac{1}{2}.


Solution for cos(2x)2-\frac{\cos(2x)}{2} is:

y=Bsin(2x)+Dcos(2x).y=B\sin(2x)+D\cos(2x). Then y=4Bsin(2x)4Dcos(2x).y''=-4B\sin(2x)-4D\cos(2x). Substitute in original equation 6Bsin(2x)6Dcos(2x)=cos(2x).-6B\sin(2x)-6D\cos(2x)=-\cos(2x). From here B=0,D=16.B=0, D=\frac{1}{6}. So,

y=cos(2x)6.y=\frac{\cos(2x)}{6}.

3)


y=C1sinx+C2cosx+12+cos(2x)6.y=C_1\sin x+C_2\cos x+\frac{1}{2}+\frac{\cos(2x)}{6}.

Answer. y=C1sinx+C2cosx+12+cos(2x)6.y=C_1\sin x+C_2\cos x+\frac{1}{2}+\frac{\cos(2x)}{6}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment