Question #244282

Find the differential equations of the following equations by integrating factors by inspection. Show complete solution.


xdy - ydx = x^4 ydy + x^3 y^2dx 


1
Expert's answer
2021-10-12T09:01:40-0400

xdyydx=x4ydy+x3y2dx=xdyydxx4ydyx3y2dx=0=xdyydxx3y(xdy+ydx)=0Divide through by x2 to obtainxdyydxx2xyd(xy)=0=d(yx)xyd(xy)=0(1)Integrating (1) we haveyx12(xy)2=c\displaystyle xdy -ydx = x^4ydy + x^3y^2dx\\ =xdy -ydx - x^4ydy-x^3y^2dx=0\\ =xdy - ydx - x^3y(xdy+ydx)=0\\ \text{Divide through by $x^2$ to obtain}\\ \frac{xdy - ydx}{x^2}-xyd(xy)=0\\ =d(\frac{y}{x})-xyd(xy)=0 \qquad (1)\\ \text{Integrating (1) we have}\\ \frac{y}{x}-\frac{1}{2}(xy)^2=c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS