y′′−y=g(x)xex/2.
The auxiliary equation is given by:
D2−1=0⇒D2=1⇒D=±1
complementary equation:yc=c1y1ex+c2y2e−x
By variation of parameters,
Wronskian of the 2 functions is:
W=∣∣y1y1′y2y2′∣∣=∣∣exexe−x−e−x∣∣
=−e0−e0=−1−1=−2
Now, the particular solution is given by:
yp(x)=y1∫Wy2g(x)dx+y2∫Wy1g(x)dx.=ex∫−2e−x⋅xex/2dx+e−x∫−2ex⋅xex/2dx
=−21∫xex/2dx−21∫xex/2dx=−21∫xex/2dx
On integrating by parts,
yp(x)=−21[4(21e2xx−e2x)]=−2(e2xx−e2x)=2e2x−2xe2x
∴ The general solution is given by:
y=yc+yp=c1ex+c2e−x+2e2x−2xe2x
Comments