y ′ ′ − y = x e x / 2 ⏟ g ( x ) . y^{\prime \prime}-y=\underbrace{x e^{x/ 2}}_{g(x)} \text {. } y ′′ − y = g ( x ) x e x /2 .
The auxiliary equation is given by:
D 2 − 1 = 0 ⇒ D 2 = 1 ⇒ D = ± 1 \begin{aligned}
& D^{2}-1=0 \\
&\Rightarrow D^{2}=1 \Rightarrow \quad D=\pm 1
\end{aligned} D 2 − 1 = 0 ⇒ D 2 = 1 ⇒ D = ± 1
complementary equation:y c = c 1 e x ⏟ y 1 + c 2 e − x ⏟ y 2 \quad y_{c}=c_{1} \underbrace{e^{ x}}_{y_{1}}+c_{2} \underbrace{e^{- x}}_{y_{2}} y c = c 1 y 1 e x + c 2 y 2 e − x
By variation of parameters,
Wronskian of the 2 functions is:
W = ∣ y 1 y 2 y 1 ′ y 2 ′ ∣ = ∣ e x e − x e x − e − x ∣ W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
e^{x} & e^{-{x}} \\
e^{x} & - e^{- x}
\end{array}\right| W = ∣ ∣ y 1 y 1 ′ y 2 y 2 ′ ∣ ∣ = ∣ ∣ e x e x e − x − e − x ∣ ∣
= − e 0 − e 0 = − 1 − 1 = − 2 =-e^0-e^0
\\=-1-1
\\=-2 = − e 0 − e 0 = − 1 − 1 = − 2
Now, the particular solution is given by:
y p ( x ) = y 1 ∫ y 2 g ( x ) W d x + y 2 ∫ y 1 g ( x ) W d x . = e x ∫ e − x ⋅ x e x / 2 d x − 2 + e − x ∫ e x ⋅ x e x / 2 − 2 d x \begin{aligned}
y_{p}(x) &=y_{1} \int \frac{y_{2} g(x)}{W} d x+y_{2} \int \frac{y_{1} g(x)}{W} d x . \\
&=e^{{x}} \int \frac{e^{-{x}} \cdot x e^{{x/2}} d x}{-2}+e^{-{x}} \int \frac{e^{{x}} \cdot x e^{x / 2}}{-2} d x \\
\end{aligned} y p ( x ) = y 1 ∫ W y 2 g ( x ) d x + y 2 ∫ W y 1 g ( x ) d x . = e x ∫ − 2 e − x ⋅ x e x /2 d x + e − x ∫ − 2 e x ⋅ x e x /2 d x
= − 1 2 ∫ x e x / 2 d x − 1 2 ∫ x e x / 2 d x = − 1 2 ∫ x e x / 2 d x =-\dfrac12 \int xe^{x / 2} d x-\dfrac12 \int xe^{x / 2} d x \\
=-\dfrac12 \int xe^{x / 2} d x\\ = − 2 1 ∫ x e x /2 d x − 2 1 ∫ x e x /2 d x = − 2 1 ∫ x e x /2 d x
On integrating by parts,
y p ( x ) = − 1 2 [ 4 ( 1 2 e x 2 x − e x 2 ) ] = − 2 ( e x 2 x − e x 2 ) = 2 e x 2 − 2 x e x 2 y_p(x)=-\dfrac12[4\left(\frac{1}{2}e^{\frac{x}{2}}x-e^{\frac{x}{2}}\right)]
\\=-2\left(e^{\frac{x}{2}}x-e^{\frac{x}{2}}\right)
\\=2e^\frac{x}{2}-2xe^\frac{x}{2} y p ( x ) = − 2 1 [ 4 ( 2 1 e 2 x x − e 2 x ) ] = − 2 ( e 2 x x − e 2 x ) = 2 e 2 x − 2 x e 2 x
∴ \therefore ∴ The general solution is given by:
y = y c + y p = c 1 e x + c 2 e − x + 2 e x 2 − 2 x e x 2 y=y_{c}+y_{p}
\\=c_{1} e^{{x}}+c_{2} e^{-{x}}+2e^\frac{x}{2}-2xe^\frac{x}{2} y = y c + y p = c 1 e x + c 2 e − x + 2 e 2 x − 2 x e 2 x
Comments