Question #244374
Solve by the method of variation of parameters y"-y=xe^x/2
1
Expert's answer
2022-01-06T06:47:57-0500

Solution:

yy=xex/2g(x)y^{\prime \prime}-y=\underbrace{x e^{x/ 2}}_{g(x)} \text {. }

The auxiliary equation is given by:

D21=0D2=1D=±1\begin{aligned} & D^{2}-1=0 \\ &\Rightarrow D^{2}=1 \Rightarrow \quad D=\pm 1 \end{aligned}

complementary equation:yc=c1exy1+c2exy2\quad y_{c}=c_{1} \underbrace{e^{ x}}_{y_{1}}+c_{2} \underbrace{e^{- x}}_{y_{2}}

By variation of parameters,

Wronskian of the 2 functions is:


W=y1y2y1y2=exexexexW=\left|\begin{array}{ll} y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime} \end{array}\right|=\left|\begin{array}{ll} e^{x} & e^{-{x}} \\ e^{x} & - e^{- x} \end{array}\right|

=e0e0=11=2=-e^0-e^0 \\=-1-1 \\=-2

Now, the particular solution is given by:

yp(x)=y1y2g(x)Wdx+y2y1g(x)Wdx.=exexxex/2dx2+exexxex/22dx\begin{aligned} y_{p}(x) &=y_{1} \int \frac{y_{2} g(x)}{W} d x+y_{2} \int \frac{y_{1} g(x)}{W} d x . \\ &=e^{{x}} \int \frac{e^{-{x}} \cdot x e^{{x/2}} d x}{-2}+e^{-{x}} \int \frac{e^{{x}} \cdot x e^{x / 2}}{-2} d x \\ \end{aligned}

=12xex/2dx12xex/2dx=12xex/2dx=-\dfrac12 \int xe^{x / 2} d x-\dfrac12 \int xe^{x / 2} d x \\ =-\dfrac12 \int xe^{x / 2} d x\\

On integrating by parts,

yp(x)=12[4(12ex2xex2)]=2(ex2xex2)=2ex22xex2y_p(x)=-\dfrac12[4\left(\frac{1}{2}e^{\frac{x}{2}}x-e^{\frac{x}{2}}\right)] \\=-2\left(e^{\frac{x}{2}}x-e^{\frac{x}{2}}\right) \\=2e^\frac{x}{2}-2xe^\frac{x}{2}

\therefore The general solution is given by:

y=yc+yp=c1ex+c2ex+2ex22xex2y=y_{c}+y_{p} \\=c_{1} e^{{x}}+c_{2} e^{-{x}}+2e^\frac{x}{2}-2xe^\frac{x}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS