Answer to Question #231182 in Differential Equations for Randal Rodriguez

Question #231182

determine the values of r for which the given differential equation has solutions of the form y = e^rt

11.y′′′\:−\:3y′′\:+\:2y′\:=\:0


1
Expert's answer
2021-09-06T13:11:30-0400

The auxilliary equation for the given differential equation isy33y2+2y=0Next, we factorise the auxillary equation, since y1 is a factor, we have that(y2+ay+b)(y1)=y33y2+2y=y3+y2(a1)+y(ba)=y33y2+2yComparing co-efficients, we have thata1=3a=2b+2=2b=0    (y22y)(y1)=0=y(y1)(y2)=0Hence y=0y=1 and y=2, we know that the solution of the differential equation isx=ceytthe values of r are 0, 1 and 2\text{The auxilliary equation for the given differential equation is}\\ y^3-3y^2+2y=0\\ \text{Next, we factorise the auxillary equation, since $y-1$ is a factor, we have that}\\ (y^2 + ay + b)(y-1) = y^3 -3y^2 +2y\\ =y^3 +y^2(a-1) +y(b-a) = y^3 -3y^2 +2y\\ \text{Comparing co-efficients, we have that}\\ a-1 = -3 \therefore a=-2\\ b+2 = 2 \therefore b = 0\\ \implies (y^2-2y)(y-1)=0\\ =y(y-1)(y-2)=0\\ \text{Hence $y =0$, $y = 1$ and $y=2$, we know that the solution of the differential equation is}\\ x = ce^{yt}\\ \therefore \text{the values of r are 0, 1 and 2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment