Question #231175

verify that each given function is a solution of the

differential equation.

6.′′\:+\:2y′\:−\:3y\:=\:0;\:y\left(t\right)\:=\:e^{−3t}


1
Expert's answer
2021-09-02T23:14:06-0400

y′′+2y3y=0;y(t)=e3ty′′\:+\:2y′\:−\:3y\:=\:0;\:y\left(t\right)\:=\:e^{−3t}

Replacing yy' by DD , yy'' by D2D^2 , we get:

D2+2D3=0D2+3DD3=0D(D+3)1(D+3)=0(D1)(D+3)=0D=1,3D^2+2D-3=0\\ \Rightarrow D^2+3D-D-3=0\\ \Rightarrow D(D+3)-1(D+3)=0\\ \Rightarrow (D-1)(D+3)=0\\ \therefore D=1,-3\\

1ydydx=1,3dyy=dx;dyy=3dx\frac{1}{y}\frac{dy}{dx}=1,-3\\ \Rightarrow \frac{dy}{y}=dx; \frac{dy}{y}=-3dx\\

Integrating both sides, we get:

ln(y)=x+c,3x+cln(y)=x+c,-3x+c

y=kex,ke3x\therefore y=ke^x,ke^{-3x}


Now verifying the solution:

When y=kex,y=ke^x, we get:

dydx=kex,d2ydx2=kex\frac{dy}{dx}=ke^x,\frac{d^2y}{dx^2}=ke^x

Now, substituting, these in the given differential equation, we get:

y+2y3y=0kex+2kex3kex=00=0y''+2y'-3y=0\\ \Rightarrow ke^x+2ke^x-3ke^x=0 \\ \Rightarrow 0=0

Hence Verified.


When y=ke3xy=ke^{-3x} , we get:

dydx=3ke3x,d2ydx2=9ke3x\frac{dy}{dx}=-3ke^{-3x},\frac{d^2y}{dx^2}=9ke^{-3x}

Now, substituting, these in the given differential equation, we get:

y+2y3y=09ke3x6ke3x3ke3x=00=0y''+2y'-3y=0\\ \Rightarrow 9ke^{-3x}-6ke^{-3x}-3ke^{-3x}=0 \\ \Rightarrow 0=0

Hence Verified.


Hence, solutions are obtained and verified.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS