y′′+2y′−3y=0;y(t)=e−3t
Replacing y′ by D , y′′ by D2 , we get:
D2+2D−3=0⇒D2+3D−D−3=0⇒D(D+3)−1(D+3)=0⇒(D−1)(D+3)=0∴D=1,−3
y1dxdy=1,−3⇒ydy=dx;ydy=−3dx
Integrating both sides, we get:
ln(y)=x+c,−3x+c
∴y=kex,ke−3x
Now verifying the solution:
When y=kex, we get:
dxdy=kex,dx2d2y=kex
Now, substituting, these in the given differential equation, we get:
y′′+2y′−3y=0⇒kex+2kex−3kex=0⇒0=0
Hence Verified.
When y=ke−3x , we get:
dxdy=−3ke−3x,dx2d2y=9ke−3x
Now, substituting, these in the given differential equation, we get:
y′′+2y′−3y=0⇒9ke−3x−6ke−3x−3ke−3x=0⇒0=0
Hence Verified.
Hence, solutions are obtained and verified.
Comments