y′′′′+4y′′′+3y=t,y1(t)=3t
y=3t=>y′=31,y′′=y′′′=y′′′′=0 Substitute
0+4(0)+3(3t)=t
t=t,True for t∈(−∞,∞)
The function y1(t)=3t is a solution of the given differential equation.
y′′′′+4y′′′+3y=t,y2(t)=e−t+3t
y=e−t+3t=>y′=−e−t+31,y′′=e−t,
y′′′=−e−t,y′′′′=e−t Substitute
e−t+4(−e−t)+3(e−t+3t)=t
t=t,True for t∈(−∞,∞)
The function y2(t)=e−t+3t is a solution of the given differential equation.
Comments