Question #231177

verify that each given function is a solution of the

differential equation.

8.y′′′′\:+\:4y′′′\:+\:3y\:=\:t;\:y\left(t\right)\:=\frac{t}{3}


1
Expert's answer
2021-09-03T07:34:06-0400
y+4y+3y=t,y1(t)=t3y''''+4y'''+3y=t, y_1(t)=\dfrac{t}{3}

y=t3=>y=13,y=y=y=0y=\dfrac{t}{3}=>y'=\dfrac{1}{3}, y''=y'''=y''''=0

Substitute


0+4(0)+3(t3)=t0+4(0)+3(\dfrac{t}{3})=t




t=t,True for t(,)t=t, True\ for\ t\in(-\infin, \infin)

The function y1(t)=t3y_1(t)=\dfrac{t}{3} is a solution of the given differential equation.




y+4y+3y=t,y2(t)=et+t3y''''+4y'''+3y=t, y_2(t)=e^{-t}+\dfrac{t}{3}




y=et+t3=>y=et+13,y=et,y=e^{-t}+\dfrac{t}{3}=>y'=-e^{-t}+\dfrac{1}{3}, y''=e^{-t},




y=et,y=ety'''=-e^{-t},y''''=e^{-t}

Substitute


et+4(et)+3(et+t3)=te^{-t}+4(-e^{-t})+3(e^{-t}+\dfrac{t}{3})=t




t=t,True for t(,)t=t, True\ for\ t\in(-\infin, \infin)


The function y2(t)=et+t3y_2(t)=e^{-t}+\dfrac{t}{3} is a solution of the given differential equation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS