Answer to Question #224180 in Differential Equations for mansoor1290

Question #224180

Find the Fourier Sine and Cosine transformations of the following function f (x) =2 if x< 0<a and f(x)=0 if x>a


1
Expert's answer
2021-08-10T06:08:35-0400

Solution,

For the Fourier sine transform,

By definition;

fs[f(x)]=f^s(w)=2π0f(x)sin(wx)dxf_s[{f(x)}]=\hat f_s(w)=\sqrt{\frac2π}\int_0^\infin f(x)sin(wx)dx

Hence;

f^s(w)=2π[0a2sin(wx)dx+0]\hat f_s(w)=\sqrt{\frac2π}[\int_0^a2sin(wx)dx+0]

f^s(w)=2π[2cos(wx)w0a]\hat f_s(w)=\sqrt\frac2π[\frac{-2cos(wx)}{w}|_0^a]

f^s(w)=2w2π(cos(wa)cos0)\hat f_s(w)=-\frac2w\sqrt\frac2π(cos(wa)-cos0)

f^s(w)=2w2π(cos(wa)1)\hat f_s(w)=-\frac2w\sqrt\frac2π(cos(wa)-1)

For cosine Fourier transform,

By definition;

f^c(w)=2π0f(x)cos(wx)dx\hat f_c(w)=\sqrt\frac2π\int_0^\infin f(x)cos(wx)dx

f^c(w)=2π[0a2cos(wx)dx+0]\hat f_c(w)=\sqrt\frac2π[\int_0^a2cos(wx)dx+0]

f^c(w)=2π(2sin(wx)w0a)\hat f_c(w)=\sqrt\frac2π(\frac{2sin(wx)}{w}|_0^a)

f^c(w)=2w2π(sin(wa))\hat f_c(w)=\frac2w\sqrt\frac2π(sin(wa))




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment