Domain ( f)=( − ∞ , ∞ ) (-\infty,\space \infty) ( − ∞ , ∞ ) \{0}; Vertical asymptote x=0 Unilateral limits near x=0 lim x → + 0 f ( x ) = ∣ 2 ⋅ 0 − 3 ∣ ⋅ e − 1 + 0 = 3 ⋅ e − ∞ = 3 ⋅ 0 = 0 \lim_{x\to +0} f(x) =|2\cdot 0-3|\cdot e^{\frac{-1}{+0}}=3\cdot e^{-\infty}=3\cdot 0=0 lim x → + 0 f ( x ) = ∣2 ⋅ 0 − 3∣ ⋅ e + 0 − 1 = 3 ⋅ e − ∞ = 3 ⋅ 0 = 0
lim x → − 0 f ( x ) = ∣ 2 ⋅ 0 − 3 ∣ ⋅ e − 1 − 0 = 3 ⋅ e ∞ = 3 ⋅ ∞ = ∞ \lim_{x\to -0} f(x) =|2\cdot 0-3|\cdot e^{\frac{-1}{-0}}=3\cdot e^{\infty}=3\cdot \infty=\infty lim x → − 0 f ( x ) = ∣2 ⋅ 0 − 3∣ ⋅ e − 0 − 1 = 3 ⋅ e ∞ = 3 ⋅ ∞ = ∞
4 Oblique asymptote
f ( x ) = { ( 2 x − 3 ) ⋅ e − 1 x , x ≥ 1.5 ( 3 − 2 x ) ⋅ e − 1 x , x < 1.5 f(x)=\begin{cases}
(2x-3)\cdot e^{-\frac{1}{x}},\space x\ge1.5\\(3-2x)\cdot e^{-\frac{1}{x}},\space x<1.5\ \end{cases} f ( x ) = { ( 2 x − 3 ) ⋅ e − x 1 , x ≥ 1.5 ( 3 − 2 x ) ⋅ e − x 1 , x < 1.5
lim ∣ x ∣ → ± ∞ e − 1 x = e − 1 ± ∞ = e 0 = 1 \lim_{|x|\to \pm \infty} e^{\frac{-1}{x}}=e^{-\frac{1}{\pm \infty }}=e^0=1 lim ∣ x ∣ → ± ∞ e x − 1 = e − ± ∞ 1 = e 0 = 1
so
y=2x-3 - right oblique asymptote
y=3-2x -left oblique asymptote
5 Zeros
f(x)=|2x-3|⋅ e − 1 x = 0 ⟺ x = 1.5 \cdot e^{-\frac{1}{x}}=0 \iff x=1.5 ⋅ e − x 1 = 0 ⟺ x = 1.5
{1.5} - set of zeros of the function;
6 Sign
|2x-3| ≥ 0 , e − 1 x ≥ 0 ⟹ f ( x ) ≥ 0 \ge 0,\space e^{-\frac{1}{x}}\ge 0\implies f(x) \ge 0 ≥ 0 , e − x 1 ≥ 0 ⟹ f ( x ) ≥ 0 everywhere
5 Derivative
1) x>1.5 f'(x)=( ( 2 x − 3 ) ⋅ e − 1 x ) ′ = 2 ⋅ e − 1 x + ( 2 x − 3 ) ⋅ e − 1 x ⋅ ( − 1 x ) ′ = 2 x 2 + 2 x − 3 x 2 ⋅ e − 1 − x \left( (2x-3)\cdot e^{\frac{-1}{x}} \right)'=2\cdot e^{-\frac{1}{x}}+(2x-3)\cdot e^{-\frac{1}{x}}\cdot \left( \frac{-1}{x} \right)'=\frac{2x^2+2x-3}{x^2}\cdot e^\frac{-1}{-x} ( ( 2 x − 3 ) ⋅ e x − 1 ) ′ = 2 ⋅ e − x 1 + ( 2 x − 3 ) ⋅ e − x 1 ⋅ ( x − 1 ) ′ = x 2 2 x 2 + 2 x − 3 ⋅ e − x − 1
2.x<1.5 f'(x)=( ( 3 − 2 x ) ⋅ e − 1 x ) ′ = 2 ⋅ e − 1 x + ( 2 x − 3 ) ⋅ e − 1 x ⋅ ( − 1 x ) ′ = − 2 x 2 + 2 x − 3 x 2 ⋅ e − 1 − x \left( (3-2x)\cdot e^{\frac{-1}{x}} \right)'=2\cdot e^{-\frac{1}{x}}+(2x-3)\cdot e^{-\frac{1}{x}}\cdot \left( \frac{-1}{x} \right)'=-\frac{2x^2+2x-3}{x^2}\cdot e^\frac{-1}{-x} ( ( 3 − 2 x ) ⋅ e x − 1 ) ′ = 2 ⋅ e − x 1 + ( 2 x − 3 ) ⋅ e − x 1 ⋅ ( x − 1 ) ′ = − x 2 2 x 2 + 2 x − 3 ⋅ e − x − 1
5.1 Zeros of derivative
2x2 +2x-3=0;
x 1 , 2 = − 2 ± 4 + 24 4 = − 1 ± 7 2 x_{1,2}=\frac{-2 \pm\sqrt{4+24}}{4}=\frac{-1\pm \sqrt 7}{2} x 1 , 2 = 4 − 2 ± 4 + 24 = 2 − 1 ± 7
both values are less than 1.5
5.2 Sign of derivative and monotony, extremes
x ∈ ( − ∞ , − 1 − 7 2 ) x \in \left ( -\infty , \frac{-1-\sqrt 7}{2} \right) x ∈ ( − ∞ , 2 − 1 − 7 ) f'(x)<0 f(x) decreasing
x ∈ ( − 1 − 7 2 , 0 ) ∪ ( 0 , − 1 + 7 2 ) x \in \left ( \frac{-1-\sqrt 7}{2} , 0 \right ) \cup \left(0,\frac{-1+\sqrt 7}{2} \right) x ∈ ( 2 − 1 − 7 , 0 ) ∪ ( 0 , 2 − 1 + 7 ) f'(x)>0 f(x) increaing
x ∈ ( − 1 + 7 2 , 1.5 ) x \in \left(\frac{-1+\sqrt 7}{2},\space 1.5 \right) x ∈ ( 2 − 1 + 7 , 1.5 ) f'(x)<0 f(x) decreasing
x ∈ ( 1.5 , ∞ ) x\in (1.5, \infty) x ∈ ( 1.5 , ∞ ) f'(x)>0 f(x) increasing
x 1 = − 1 − 7 2 x_{1}= \frac{-1-\sqrt 7}{2} x 1 = 2 − 1 − 7 - point of minimum
x 1 = − 1 + 7 2 x_{1}= \frac{-1+\sqrt 7}{2} x 1 = 2 − 1 + 7 - point of local maximum
6 Second derivative
1) x>1.5
f''(x)=( ( 2 + 2 x − 3 x 2 ) ⋅ e − 1 x ) ′ = ( − 2 x 2 + 6 x 3 ) ⋅ e − 1 x + ( 2 + 2 x − 3 x 2 ) ⋅ ( e − 1 x ) ′ = \left((2+\frac{2}{x}-\frac{3}{x^2})\cdot e^{-\frac{1}{x}}\right)'=\left( -\frac{2}{x^2} +\frac{6}{x^3}\right)
\cdot e^{-\frac{1}{x}}+(2+\frac{2}{x}-\frac{3}{x^2})\cdot\left( e^{-\frac{1}{x}} \right)'= ( ( 2 + x 2 − x 2 3 ) ⋅ e − x 1 ) ′ = ( − x 2 2 + x 3 6 ) ⋅ e − x 1 + ( 2 + x 2 − x 2 3 ) ⋅ ( e − x 1 ) ′ =
( ( 2 + 2 x − 3 x 2 ) ⋅ e − 1 x ) ′ = ( − 2 x 2 + 6 x 3 ) ⋅ e − 1 x + ( 2 + 2 x − 3 x 2 ) ⋅ e − 1 x ⋅ 1 x 2 = = − 2 x 2 + 6 x + 2 x 2 + 2 x − 3 x 4 ⋅ e − 1 x = 8 x − 3 x 4 ⋅ e − 1 x \left((2+\frac{2}{x}-\frac{3}{x^2})\cdot e^{-\frac{1}{x}}\right)'=\left( -\frac{2}{x^2} +\frac{6}{x^3}\right)
\cdot e^{-\frac{1}{x}}+(2+\frac{2}{x}-\frac{3}{x^2})\cdot e^{-\frac{1}{x}}\cdot \frac {1}{x^2}=\\
=\frac{-2x^2+6x+2x^2+2x-3}{x^4}\cdot e^{-\frac{1}{x}}=\frac{8x-3}{x^4}\cdot e^{-\frac{1}{x}} ( ( 2 + x 2 − x 2 3 ) ⋅ e − x 1 ) ′ = ( − x 2 2 + x 3 6 ) ⋅ e − x 1 + ( 2 + x 2 − x 2 3 ) ⋅ e − x 1 ⋅ x 2 1 = = x 4 − 2 x 2 + 6 x + 2 x 2 + 2 x − 3 ⋅ e − x 1 = x 4 8 x − 3 ⋅ e − x 1
2) x<1.5
f''(x)=− 8 x − 3 x 4 ⋅ e − 1 x -\frac{8x-3}{x^4}\cdot e^{-\frac{1}{x}} − x 4 8 x − 3 ⋅ e − x 1
6.1 Zeros of second derivative
f''(x)=0 ⟺ x = 3 8 < 1.5 \iff x=\frac{3}{8}<1.5 ⟺ x = 8 3 < 1.5
Sign of f''(x)
x ∈ ( − ∞ , 0 ) x \in (-\infty, 0) x ∈ ( − ∞ , 0 ) f''(x)>0, f(x) is convex
x ∈ ( 0 , 3 8 ) x\in(0,\frac{3}{8}) x ∈ ( 0 , 8 3 ) f"(x)>0 f(x) is convex
x ∈ ( 3 8 , 1.5 ) x\in(\frac{3}{8},1.5) x ∈ ( 8 3 , 1.5 ) f''(x)<0 f(x) is concave
x ∈ ( 1.5 , ∞ ) x\in (1.5,\infty) x ∈ ( 1.5 , ∞ ) f''(x)<0 f(x) ic convex
x3,4 =3/8,1.5 - points d'inflexion
Scetch of graph
Comments