Question #223132

Study the following functions

5) f(x) = I2x - 3Ie-1/x


1
Expert's answer
2021-09-21T04:59:55-0400
  1. Domain ( f)=(, )(-\infty,\space \infty) \{0};
  2. Vertical asymptote x=0
  3. Unilateral limits near x=0

limx+0f(x)=203e1+0=3e=30=0\lim_{x\to +0} f(x) =|2\cdot 0-3|\cdot e^{\frac{-1}{+0}}=3\cdot e^{-\infty}=3\cdot 0=0

limx0f(x)=203e10=3e=3=\lim_{x\to -0} f(x) =|2\cdot 0-3|\cdot e^{\frac{-1}{-0}}=3\cdot e^{\infty}=3\cdot \infty=\infty

4 Oblique asymptote

f(x)={(2x3)e1x, x1.5(32x)e1x, x<1.5 f(x)=\begin{cases} (2x-3)\cdot e^{-\frac{1}{x}},\space x\ge1.5\\(3-2x)\cdot e^{-\frac{1}{x}},\space x<1.5\ \end{cases}

limx±e1x=e1±=e0=1\lim_{|x|\to \pm \infty} e^{\frac{-1}{x}}=e^{-\frac{1}{\pm \infty }}=e^0=1

so

y=2x-3 - right oblique asymptote

y=3-2x -left oblique asymptote

5 Zeros

f(x)=|2x-3|e1x=0    x=1.5\cdot e^{-\frac{1}{x}}=0 \iff x=1.5

{1.5} - set of zeros of the function;

6 Sign

|2x-3| 0, e1x0    f(x)0\ge 0,\space e^{-\frac{1}{x}}\ge 0\implies f(x) \ge 0 everywhere

5 Derivative

1) x>1.5 f'(x)=((2x3)e1x)=2e1x+(2x3)e1x(1x)=2x2+2x3x2e1x\left( (2x-3)\cdot e^{\frac{-1}{x}} \right)'=2\cdot e^{-\frac{1}{x}}+(2x-3)\cdot e^{-\frac{1}{x}}\cdot \left( \frac{-1}{x} \right)'=\frac{2x^2+2x-3}{x^2}\cdot e^\frac{-1}{-x}

2.x<1.5 f'(x)=((32x)e1x)=2e1x+(2x3)e1x(1x)=2x2+2x3x2e1x\left( (3-2x)\cdot e^{\frac{-1}{x}} \right)'=2\cdot e^{-\frac{1}{x}}+(2x-3)\cdot e^{-\frac{1}{x}}\cdot \left( \frac{-1}{x} \right)'=-\frac{2x^2+2x-3}{x^2}\cdot e^\frac{-1}{-x}

5.1 Zeros of derivative

2x2+2x-3=0;

x1,2=2±4+244=1±72x_{1,2}=\frac{-2 \pm\sqrt{4+24}}{4}=\frac{-1\pm \sqrt 7}{2}

both values are less than 1.5

5.2 Sign of derivative and monotony, extremes

x(,172)x \in \left ( -\infty , \frac{-1-\sqrt 7}{2} \right) f'(x)<0 f(x) decreasing

x(172,0)(0,1+72)x \in \left ( \frac{-1-\sqrt 7}{2} , 0 \right ) \cup \left(0,\frac{-1+\sqrt 7}{2} \right) f'(x)>0 f(x) increaing

x(1+72, 1.5)x \in \left(\frac{-1+\sqrt 7}{2},\space 1.5 \right) f'(x)<0 f(x) decreasing

x(1.5,)x\in (1.5, \infty) f'(x)>0 f(x) increasing

x1=172x_{1}= \frac{-1-\sqrt 7}{2} - point of minimum

x1=1+72x_{1}= \frac{-1+\sqrt 7}{2} - point of local maximum

6 Second derivative

1) x>1.5

f''(x)=((2+2x3x2)e1x)=(2x2+6x3)e1x+(2+2x3x2)(e1x)=\left((2+\frac{2}{x}-\frac{3}{x^2})\cdot e^{-\frac{1}{x}}\right)'=\left( -\frac{2}{x^2} +\frac{6}{x^3}\right) \cdot e^{-\frac{1}{x}}+(2+\frac{2}{x}-\frac{3}{x^2})\cdot\left( e^{-\frac{1}{x}} \right)'=

((2+2x3x2)e1x)=(2x2+6x3)e1x+(2+2x3x2)e1x1x2==2x2+6x+2x2+2x3x4e1x=8x3x4e1x\left((2+\frac{2}{x}-\frac{3}{x^2})\cdot e^{-\frac{1}{x}}\right)'=\left( -\frac{2}{x^2} +\frac{6}{x^3}\right) \cdot e^{-\frac{1}{x}}+(2+\frac{2}{x}-\frac{3}{x^2})\cdot e^{-\frac{1}{x}}\cdot \frac {1}{x^2}=\\ =\frac{-2x^2+6x+2x^2+2x-3}{x^4}\cdot e^{-\frac{1}{x}}=\frac{8x-3}{x^4}\cdot e^{-\frac{1}{x}}

2) x<1.5

f''(x)=8x3x4e1x-\frac{8x-3}{x^4}\cdot e^{-\frac{1}{x}}

6.1 Zeros of second derivative

f''(x)=0     x=38<1.5\iff x=\frac{3}{8}<1.5

Sign of f''(x)

x(,0)x \in (-\infty, 0) f''(x)>0, f(x) is convex

x(0,38)x\in(0,\frac{3}{8}) f"(x)>0 f(x) is convex

x(38,1.5)x\in(\frac{3}{8},1.5) f''(x)<0 f(x) is concave

x(1.5,)x\in (1.5,\infty) f''(x)<0 f(x) ic convex

x3,4=3/8,1.5 - points d'inflexion

Scetch of graph


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS