- Domain ( f)=(−∞, ∞) \{0};
- Vertical asymptote x=0
- Unilateral limits near x=0
limx→+0f(x)=∣2⋅0−3∣⋅e+0−1=3⋅e−∞=3⋅0=0
limx→−0f(x)=∣2⋅0−3∣⋅e−0−1=3⋅e∞=3⋅∞=∞
4 Oblique asymptote
f(x)={(2x−3)⋅e−x1, x≥1.5(3−2x)⋅e−x1, x<1.5
lim∣x∣→±∞ex−1=e−±∞1=e0=1
so
y=2x-3 - right oblique asymptote
y=3-2x -left oblique asymptote
5 Zeros
f(x)=|2x-3|⋅e−x1=0⟺x=1.5
{1.5} - set of zeros of the function;
6 Sign
|2x-3| ≥0, e−x1≥0⟹f(x)≥0 everywhere
5 Derivative
1) x>1.5 f'(x)=((2x−3)⋅ex−1)′=2⋅e−x1+(2x−3)⋅e−x1⋅(x−1)′=x22x2+2x−3⋅e−x−1
2.x<1.5 f'(x)=((3−2x)⋅ex−1)′=2⋅e−x1+(2x−3)⋅e−x1⋅(x−1)′=−x22x2+2x−3⋅e−x−1
5.1 Zeros of derivative
2x2+2x-3=0;
x1,2=4−2±4+24=2−1±7
both values are less than 1.5
5.2 Sign of derivative and monotony, extremes
x∈(−∞,2−1−7) f'(x)<0 f(x) decreasing
x∈(2−1−7,0)∪(0,2−1+7) f'(x)>0 f(x) increaing
x∈(2−1+7, 1.5) f'(x)<0 f(x) decreasing
x∈(1.5,∞) f'(x)>0 f(x) increasing
x1=2−1−7 - point of minimum
x1=2−1+7 - point of local maximum
6 Second derivative
1) x>1.5
f''(x)=((2+x2−x23)⋅e−x1)′=(−x22+x36)⋅e−x1+(2+x2−x23)⋅(e−x1)′=
((2+x2−x23)⋅e−x1)′=(−x22+x36)⋅e−x1+(2+x2−x23)⋅e−x1⋅x21==x4−2x2+6x+2x2+2x−3⋅e−x1=x48x−3⋅e−x1
2) x<1.5
f''(x)=−x48x−3⋅e−x1
6.1 Zeros of second derivative
f''(x)=0 ⟺x=83<1.5
Sign of f''(x)
x∈(−∞,0) f''(x)>0, f(x) is convex
x∈(0,83) f"(x)>0 f(x) is convex
x∈(83,1.5) f''(x)<0 f(x) is concave
x∈(1.5,∞) f''(x)<0 f(x) ic convex
x3,4=3/8,1.5 - points d'inflexion
Scetch of graph
Comments