Question #223553

Solve the following initial value problem

  1. Ut(x,t)=10Uxx(x,t) -1<x<1, t>0
  2. U(-1,t)=U(1,t) Ux(-1,t)=Ux(1,t) t>0
  3. Ux(x,0)=x+1 -1<x<1
1
Expert's answer
2021-12-27T04:19:16-0500

solution of heat equation:

u(x,t)=Bnsin(nπx/L)ek(nπ/L)2tu(x,t)=\sum B_n sin(n\pi x/L)e^{-k(n\pi /L)^2t}

where

Bn=2L0Lf(x)sin(nπx/L)dxB_n=\frac{2}{L}\int^L_0f(x)sin(n\pi x/L)dx

f(x)=u(x,0)f(x)=u(x,0)

we have:

k=10,L=1k=10,L=1

then:

f(x)=11ux(x,0)dx=11(x+1)dx=2f(x)=\int^1_{-1}u_x(x,0)dx=\int^1_{-1}(x+1)dx=2

Bn=401sin(nπx)dx=4πncos(nπx)01=4πncos(nπ)+4πnB_n=4\int^1_0sin(n\pi x)dx=-\frac{4}{\pi n}cos(n\pi x)|^1_0=-\frac{4}{\pi n}cos(n\pi )+\frac{4}{\pi n}

Bn=0B_n=0 for even n

Bn=8πnB_n=\frac{8}{\pi n} for odd n


un(x,t)=0u_n(x,t)=0 for even n

un(x,t)=8πnsin(nπx)e10(nπ)2tu_n(x,t)=\frac{8}{\pi n}sin(n\pi x)e^{-10(n\pi )^2t} for odd n


for u(1,t)=u(1,t)u(-1,t)=u(1,t) :

u(1,t)=8πnsin(nπ)e10(nπ)2t=0u(-1,t)=\frac{8}{\pi n}sin(-n\pi )e^{-10(n\pi )^2t}=0

u(1,t)=8πnsin(nπ)e10(nπ)2t=0u(1,t)=\frac{8}{\pi n}sin(n\pi )e^{-10(n\pi )^2t}=0


for ux(1,t)=ux(1,t)u_x(-1,t)=u_x(1,t) :

ux(x,t)=8cos(nπx)e10(nπ)2tu_x(x,t)=8cos(n\pi x)e^{-10(n\pi )^2t}

ux(1,t)=8cos(nπ)e10(nπ)2t=8e10(nπ)2tu_x(-1,t)=8cos(-n\pi )e^{-10(n\pi )^2t}=-8e^{-10(n\pi )^2t}

ux(1,t)=8cos(nπ)e10(nπ)2t=8e10(nπ)2tu_x(1,t)=8cos(n\pi )e^{-10(n\pi )^2t}=-8e^{-10(n\pi )^2t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS