solution of heat equation:
u(x,t)=∑Bnsin(nπx/L)e−k(nπ/L)2t
where
Bn=L2∫0Lf(x)sin(nπx/L)dx
f(x)=u(x,0)
we have:
k=10,L=1
then:
f(x)=∫−11ux(x,0)dx=∫−11(x+1)dx=2
Bn=4∫01sin(nπx)dx=−πn4cos(nπx)∣01=−πn4cos(nπ)+πn4
Bn=0 for even n
Bn=πn8 for odd n
un(x,t)=0 for even n
un(x,t)=πn8sin(nπx)e−10(nπ)2t for odd n
for u(−1,t)=u(1,t) :
u(−1,t)=πn8sin(−nπ)e−10(nπ)2t=0
u(1,t)=πn8sin(nπ)e−10(nπ)2t=0
for ux(−1,t)=ux(1,t) :
ux(x,t)=8cos(nπx)e−10(nπ)2t
ux(−1,t)=8cos(−nπ)e−10(nπ)2t=−8e−10(nπ)2t
ux(1,t)=8cos(nπ)e−10(nπ)2t=−8e−10(nπ)2t
Comments