Answer to Question #215963 in Differential Equations for killa

Question #215963

(D2 -2D +3)y = x2 -1


1
Expert's answer
2021-07-13T05:15:50-0400
(D22D+3)y=x21(D^2-2D+3)y=x^2-1

The homogeneous differential equation


(D22D+3)y=0(D^2-2D+3)y=0

The characteristic equation


r22r+3=0r^2-2r+3=0

r1=12i,r2=1+2ir_1=1-\sqrt{2}i,r_2=1+\sqrt{2}i

The general solution of the homogenepus equation is


yh=c1excos(2x)+c2exsin(2x)y_h=c_1e^x\cos(\sqrt{2}x)+c_2e^x\sin(\sqrt{2}x)

Find the particular solution of the nonhomogeneous differential equation


yp=Ax2+Bx+Cy_p=Ax^2+Bx+C

yp=2Ax+By_p '=2Ax+B


yp=2Ay_p''=2A

Substitute


2A4Ax2B+3Ax2+3Bx+3C=x212A-4Ax-2B+3Ax^2+3Bx+3C=x^2-1

3A=1=>A=133A=1=>A=\dfrac{1}{3}

4A+3B=0=>B=49-4A+3B=0=>B=\dfrac{4}{9}

2A2B+3C=1=>C=7272A-2B+3C=-1=>C=-\dfrac{7}{27}

Then


yp=13x2+49x727y_p=\dfrac{1}{3}x^2+\dfrac{4}{9}x-\dfrac{7}{27}

The general solution of the given nonhomogenepus equation is


y=c1excos(2x)+c2exsin(2x)+13x2+49x727y=c_1e^x\cos(\sqrt{2}x)+c_2e^x\sin(\sqrt{2}x)+\dfrac{1}{3}x^2+\dfrac{4}{9}x-\dfrac{7}{27}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment