( D 2 − 2 D + 3 ) y = x 2 − 1 (D^2-2D+3)y=x^2-1 ( D 2 − 2 D + 3 ) y = x 2 − 1 The homogeneous differential equation
( D 2 − 2 D + 3 ) y = 0 (D^2-2D+3)y=0 ( D 2 − 2 D + 3 ) y = 0 The characteristic equation
r 2 − 2 r + 3 = 0 r^2-2r+3=0 r 2 − 2 r + 3 = 0
r 1 = 1 − 2 i , r 2 = 1 + 2 i r_1=1-\sqrt{2}i,r_2=1+\sqrt{2}i r 1 = 1 − 2 i , r 2 = 1 + 2 i The general solution of the homogenepus equation is
y h = c 1 e x cos ( 2 x ) + c 2 e x sin ( 2 x ) y_h=c_1e^x\cos(\sqrt{2}x)+c_2e^x\sin(\sqrt{2}x) y h = c 1 e x cos ( 2 x ) + c 2 e x sin ( 2 x ) Find the particular solution of the nonhomogeneous differential equation
y p = A x 2 + B x + C y_p=Ax^2+Bx+C y p = A x 2 + B x + C
y p ′ = 2 A x + B y_p '=2Ax+B y p ′ = 2 A x + B
y p ′ ′ = 2 A y_p''=2A y p ′′ = 2 A Substitute
2 A − 4 A x − 2 B + 3 A x 2 + 3 B x + 3 C = x 2 − 1 2A-4Ax-2B+3Ax^2+3Bx+3C=x^2-1 2 A − 4 A x − 2 B + 3 A x 2 + 3 B x + 3 C = x 2 − 1
3 A = 1 = > A = 1 3 3A=1=>A=\dfrac{1}{3} 3 A = 1 => A = 3 1
− 4 A + 3 B = 0 = > B = 4 9 -4A+3B=0=>B=\dfrac{4}{9} − 4 A + 3 B = 0 => B = 9 4
2 A − 2 B + 3 C = − 1 = > C = − 7 27 2A-2B+3C=-1=>C=-\dfrac{7}{27} 2 A − 2 B + 3 C = − 1 => C = − 27 7 Then
y p = 1 3 x 2 + 4 9 x − 7 27 y_p=\dfrac{1}{3}x^2+\dfrac{4}{9}x-\dfrac{7}{27} y p = 3 1 x 2 + 9 4 x − 27 7 The general solution of the given nonhomogenepus equation is
y = c 1 e x cos ( 2 x ) + c 2 e x sin ( 2 x ) + 1 3 x 2 + 4 9 x − 7 27 y=c_1e^x\cos(\sqrt{2}x)+c_2e^x\sin(\sqrt{2}x)+\dfrac{1}{3}x^2+\dfrac{4}{9}x-\dfrac{7}{27} y = c 1 e x cos ( 2 x ) + c 2 e x sin ( 2 x ) + 3 1 x 2 + 9 4 x − 27 7
Comments