(D2−2D+3)y=x2−1 The homogeneous differential equation
(D2−2D+3)y=0 The characteristic equation
r2−2r+3=0
r1=1−2i,r2=1+2i The general solution of the homogenepus equation is
yh=c1excos(2x)+c2exsin(2x) Find the particular solution of the nonhomogeneous differential equation
yp=Ax2+Bx+C
yp′=2Ax+B
yp′′=2A Substitute
2A−4Ax−2B+3Ax2+3Bx+3C=x2−1
3A=1=>A=31
−4A+3B=0=>B=94
2A−2B+3C=−1=>C=−277 Then
yp=31x2+94x−277 The general solution of the given nonhomogenepus equation is
y=c1excos(2x)+c2exsin(2x)+31x2+94x−277
Comments
Leave a comment