(11+x2+cost−2xt)dxdt−x(x+sint)=0(\frac{1}{1+x^2} + \cos t -2xt) \frac{dx}{dt}- x(x+\sin t)=0(1+x21+cost−2xt)dtdx−x(x+sint)=0
(11+x2+cost−2xt)dxdt−x(x+sint)=ddt(arctanx+xcost−x2t)=0(\frac{1}{1+x^2} + \cos t -2xt) \frac{dx}{dt}- x(x+\sin t)=\frac{d}{dt}(\arctan x+x\cos t-x^2t)=0(1+x21+cost−2xt)dtdx−x(x+sint)=dtd(arctanx+xcost−x2t)=0
arctanx+xcost−x2t=C\arctan x+x\cos t-x^2t=Carctanx+xcost−x2t=C
if t=0 and x(0)=1 then
C=arctanx+xcost−x2t=arctan1+1⋅cos0−12⋅0=π/4+1C=\arctan x+x\cos t-x^2t=\arctan 1+1\cdot \cos 0-1^2\cdot0=\pi/4+1C=arctanx+xcost−x2t=arctan1+1⋅cos0−12⋅0=π/4+1
Answer: arctanx+xcost−x2t=π/4+1\arctan x+x\cos t-x^2t=\pi/4+1arctanx+xcost−x2t=π/4+1
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments