Question #215854
Solve the problem :
(1/(1+x^2) + cos t -2xt) dx/dt = x(x+sin t), x(0)=1
1
Expert's answer
2021-07-12T18:43:07-0400

(11+x2+cost2xt)dxdtx(x+sint)=0(\frac{1}{1+x^2} + \cos t -2xt) \frac{dx}{dt}- x(x+\sin t)=0

(11+x2+cost2xt)dxdtx(x+sint)=ddt(arctanx+xcostx2t)=0(\frac{1}{1+x^2} + \cos t -2xt) \frac{dx}{dt}- x(x+\sin t)=\frac{d}{dt}(\arctan x+x\cos t-x^2t)=0

arctanx+xcostx2t=C\arctan x+x\cos t-x^2t=C

if t=0 and x(0)=1 then

C=arctanx+xcostx2t=arctan1+1cos0120=π/4+1C=\arctan x+x\cos t-x^2t=\arctan 1+1\cdot \cos 0-1^2\cdot0=\pi/4+1


Answer: arctanx+xcostx2t=π/4+1\arctan x+x\cos t-x^2t=\pi/4+1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS