Question #215948

( 1 /t + 1/ t ^2 − y /t ^2 + y ^2 ) d t + ( y e ^y + t /t ^2 + y^ 2 ) d y = 0


1
Expert's answer
2021-07-18T08:58:39-0400

(1t+1t2yt2+y2)dt+(yey+tt2+y2)dy=0( {1 \over t} + {1\over t ^2} − {y \over t ^2 + y ^2 }) d t + ( y e ^y +{ t \over t ^2 + y^ 2 }) d y = 0


M(t,y)=M(t,y)= (1t+1t2yt2+y2)( {1 \over t} + {1\over t ^2} − {y \over t ^2 + y ^2 })


    M(t,y)y=My=1(t2+y2)2y(y)(t2+y2)2=t2+y22y2(t2+y2)2=t2y2(t2+y2)2=y2t2(t2+y2)2\implies { \partial M(t,y)\over \partial y}=M_y=-{1(t^2+y^2)-2y(y) \over (t^2+y^2)^2}=-{t^2+y^2-2y^2\over (t^2+y^2)^2}=-{t^2-y^2\over (t^2+y^2)^2}={y^2-t^2\over (t^2+y^2)^2}


N(t,y)=(yey+tt2+y2)N(t,y)=( y e ^y +{ t \over t ^2 + y^ 2 })


    N(t,y)t=Nt=y2t2(t2+y2)2\implies { \partial N(t,y)\over \partial t}=N_t={y^2-t^2\over (t^2+y^2)^2}


The differential equation is exact since My=NtM_y=N_t


There exist a function μ(t,y)\mu(t,y) such that


μ(t,y)t=M(t,y)=(1t+1t2yt2+y2){\partial \mu (t,y)\over \partial t}=M(t,y)=( {1 \over t} + {1\over t ^2} − {y \over t ^2 + y ^2 })


μ(t,y)y=N(t,y)=(yey+tt2+y2){\partial \mu (t,y)\over \partial y}=N(t,y)=( y e ^y +{ t \over t ^2 + y^ 2 })


Let μ(t,y)=yN(t,y)dy\mu (t,y)=\int^yN(t,y)dy ++ g(t)g(t)


=y(yey+tt2+y2)dy=\int^y( y e ^y +{ t \over t ^2 + y^ 2 }) dy ++ g(t)g(t)


=yeyey+tan1(yt)+g(t)=ye^y-e^y+tan^{-1}({y\over t})+g(t)


    μ(t,y)t=yt2+y2+g(t)t=1t+1t2yt2+y2\implies {\partial \mu (t,y)\over \partial t}=-{y\over t^2+y^2}+{\partial g(t)\over \partial t}={1 \over t} + {1\over t ^2} − {y \over t ^2 + y ^2 }


    g(t)t=1t+1t2\implies {\partial g(t)\over \partial t}={1 \over t} + {1\over t ^2}


    dg(t)=(1t+1t2)dt\implies \int dg(t)=\int( {1 \over t} + {1\over t ^2})dt


    g(t)=ln(t)1t\implies g(t)=ln(t)-{1\over t}


    μ(t,y)=yeyey+tan1(yt)+ln(t)1t\implies \mu(t,y)=ye^y-e^y+tan^{-1}({y\over t})+ln(t)-{1\over t}


\therefore The general solution is thus


yeyey+tan1(yt)+ln(t)1t=cye^y-e^y+tan^{-1}({y\over t})+ln(t)-{1\over t}=c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS