(t1+t21−t2+y2y)dt+(yey+t2+y2t)dy=0
M(t,y)= (t1+t21−t2+y2y)
⟹∂y∂M(t,y)=My=−(t2+y2)21(t2+y2)−2y(y)=−(t2+y2)2t2+y2−2y2=−(t2+y2)2t2−y2=(t2+y2)2y2−t2
N(t,y)=(yey+t2+y2t)
⟹∂t∂N(t,y)=Nt=(t2+y2)2y2−t2
The differential equation is exact since My=Nt
There exist a function μ(t,y) such that
∂t∂μ(t,y)=M(t,y)=(t1+t21−t2+y2y)
∂y∂μ(t,y)=N(t,y)=(yey+t2+y2t)
Let μ(t,y)=∫yN(t,y)dy + g(t)
=∫y(yey+t2+y2t)dy + g(t)
=yey−ey+tan−1(ty)+g(t)
⟹∂t∂μ(t,y)=−t2+y2y+∂t∂g(t)=t1+t21−t2+y2y
⟹∂t∂g(t)=t1+t21
⟹∫dg(t)=∫(t1+t21)dt
⟹g(t)=ln(t)−t1
⟹μ(t,y)=yey−ey+tan−1(ty)+ln(t)−t1
∴ The general solution is thus
yey−ey+tan−1(ty)+ln(t)−t1=c
Comments