Question #164818

solve the following initial value problem using laplace transforms 2d^2y/dt^3+3dy/dt-2y=e^-2t y=0,y*=-2


1
Expert's answer
2021-02-24T06:08:15-0500

First apply the Laplace transform to both sides of the equation, we will note the Laplace transform of f(t) as F(s):

2s2F(s)2sf(0)2f(0)+3sF(s)3f(0)2F(s)=1s+22s^2F(s)-2sf(0)-2f'(0)+3sF(s)-3f(0)-2F(s)=\frac{1}{s+2}

Now using the initial conditions we get:

(2s2+3s2)F(s)+4=1s+2(2s^2+3s-2)F(s)+4=\frac{1}{s+2}

F(s)=42s2+3s2+1(s+2)(2s2+3s2)F(s) = \frac{-4}{2s^2+3s-2}+\frac{1}{(s+2)(2s^2+3s-2)}

Now to find the inverse transform, we will use the linearity and we will decompose the fractions into the simple elements:

2s2+3s2=(2s1)(s+2)2s^2+3s-2=(2s-1)(s+2)

42s2+3s2=A2s1+Bs+2\frac{-4}{2s^2+3s-2}=\frac{A}{2s-1}+\frac{B}{s+2}

{A+2B=02AB=4\begin{cases} A+2B=0 \\ 2A-B=-4 \end{cases} gives us {A=8/5B=4/5\begin{cases} A=-8/5 \\ B=4/5 \end{cases}

(s+2)(2s2+3s2)=(s+2)2(2s1)(s+2)(2s^2+3s-2)=(s+2)^2(2s-1)

1(s+2)2(2s1)=Cs+D(s+2)2+E2s1\frac{1}{(s+2)^2(2s-1)}=\frac{Cs+D}{(s+2)^2}+\frac{E}{2s-1}

{2C+E=0C+4E+2D=0D+4E=1\begin{cases} 2C+E=0 \\ -C+4E+2D=0 \\ -D+4E=1 \end{cases} gives us {C=2/25D=9/25E=4/25\begin{cases} C = -2/25 \\ D=-9/25 \\ E= 4/25\end{cases} , which we can write as

2251s+2151(s+2)2+2251s1/2\frac{-2}{25}\frac{1}{s+2}-\frac{1}{5}\frac{1}{(s+2)^2}+\frac{2}{25}\frac{1}{s-1/2}

Now by applying the inverse transformation term by term we find:

f(t)=45et/2+45e2t225e2t15e2tt+225et/2f(t)=-\frac{4}{5}e^{t/2}+\frac{4}{5}e^{-2t}-\frac{2}{25}e^{-2t}-\frac{1}{5}e^{-2t}t+\frac{2}{25}e^{t/2}

f(t)=1825et/2+(182515t)e2tf(t)=-\frac{18}{25}e^{t/2}+(\frac{18}{25}-\frac{1}{5}t)e^{-2t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS