y=c1ex+c2e2x+c3e3xy′=c1ex+2c2e2x+3c3e3xy′′=c1ex+4c2e2x+9c3e3xy′′′=c1ex+8c2e2x+27c3e3x
Substituting into y′′′−6y′′−6y we have
c1ex+8c2e2x+27c3e3x−6(c1ex+4c2e2x+9c3e3x)−6(c1ex+c2e2x+c3e3x)=−11c1ex−22c2e2x−33c3e3x=−11y′=0
The above equation can only be 0 if y' =0
Otherwise y is not a solution of the given differential equation.
Comments