Given differential equation ∂z∂x[1+(∂z∂y)2]=∂z∂y(z−a)\frac{∂z}{∂x}[1+(\frac{∂z}{∂y}) ^2]=\frac{∂z}{∂y}(z-a)∂x∂z[1+(∂y∂z)2]=∂y∂z(z−a)
we know that, p=∂z∂xp = \frac{∂z}{∂x}p=∂x∂z and q=∂z∂yq = \frac{∂z}{∂y}q=∂y∂z
Let u=x+byu = x + byu=x+by
Then p=dzdup = \frac{dz}{du}p=dudz and q=bdzduq = b\frac{dz}{du}q=bdudz
Then equation will be
dzdu[1+b2(dzdu)2]=b(dzdu)(z−a)\frac{dz}{du}[1 +b^2(\frac{dz}{du})^2 ] = b(\frac{dz}{du})(z-a)dudz[1+b2(dudz)2]=b(dudz)(z−a)
dzdu=(bz−ab−1)b\frac{dz}{du} = \frac{\sqrt{(bz-ab-1)}}{b}dudz=b(bz−ab−1)
Integrating equation,
∫bdz(bz−ab−1)=∫du\int\frac{bdz}{\sqrt(bz-ab-1)} = \int du∫(bz−ab−1)bdz=∫du
2(bz−ab−1)=u+C2\sqrt{(bz-ab-1)} = u + C2(bz−ab−1)=u+C
then
4(bz−ab−1)=(u+C)24(bz-ab-1) = (u+C)^24(bz−ab−1)=(u+C)2
putting value of u,
4(bz−ab−1)=(x+by+C)24(bz-ab-1) = (x+by+C)^24(bz−ab−1)=(x+by+C)2
which is the required solution.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments