dxdy+2xydxdy=1+x2+y2=1+x2+y2−2xy=1+(x−y)2∴dxdy=1+(x−y)2Making the substitutionu=x−ydxdu=1−dxdy∴1−dxdy=−(x−y)2⇒dxdu=−u2Seperating the variables, we have;−u2du=dxIntegrating both sides, we have;−∫u2du=∫dxu1=x+Cu=x+C1x−y=x+C1(x−y)(x+C)=1y=x−x+C1∴y=x−x+C1is also a solution to thefirst order linear differential equationGiven thaty=xis also a solutionto the D.E, theny=(x−x+C1)+xis a solution to thefirst order linear differential equation∴y=2x−x+C1is a solution to the D.E.
Comments