Question #136651
Find the equation of integral surface to the differential equation
2y(z-3)p+(2x-z)q=y(2x-3)
1
Expert's answer
2020-10-06T14:15:38-0400

2y(z3)p+(2xz)q=y(2x3)p=zx,q=zyThe equation for the totaldifferential is thus given asdz=zxdx+zydyThe differentials are;dz=2xy6ydx=2yz6ydy=2xzThe Lagrange’s auxiliary equationsfor given PDE isdzy(2x3)=dy(2xz)=dx2y(z3)Choosing(x,3y,z)as multipliers, we havexdx+3ydyzdz=0Integrating both sides, we have thus,x2+3y2z2=C1OrChoosing(l,3m,n)as multipliers, we haveldx+3mdyndz=0lx+3mynz=C2.Thus, the solution of the given PDE isϕ(lx+3mynz,x2+3y2z2)=0l,m,nR&C1andC2are arbitrary constants2y(z-3)p+(2x-z)q=y(2x-3)\\ \displaystyle p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}\\ \textsf{The equation for the total}\\\textsf{differential is thus given as}\\ \mathrm{d}z = \frac{\partial z}{\partial x} \mathrm{d}x + \frac{\partial z}{\partial y}\mathrm{d}y \\ \textsf{The differentials are;}\\ \begin{aligned} \mathrm{d}z &= 2xy - 6y\\ \mathrm{d}x &= 2yz - 6y\\ \mathrm{d}y &= 2x - z \end{aligned} \\ \textsf{The Lagrange’s auxiliary equations}\\\textsf{for given PDE is}\\ \frac{\mathrm{d}z}{y(2x - 3)}= \frac{\mathrm{d}y}{(2x - z)} = \frac{\mathrm{d}x}{2y(z-3)} \\ \textsf{Choosing}\hspace{0.1cm} (x,3y,−z) \hspace{0.1cm}\\ \textsf{as multipliers, we have}\\ x\mathrm{d}x + 3y\mathrm{d}y - z\mathrm{d}z = 0\\ \textsf{Integrating both sides, we have thus,}\\ x² + 3y² - z² = C_1 \\ \textbf{\textsf{Or}}\\ \textsf{Choosing}\hspace{0.1cm} (l,3m,−n) \hspace{0.1cm} \\\textsf{as multipliers, we have}\\ l\mathrm{d}x + 3m\mathrm{d}y - n\mathrm{d}z = 0\\ \Rightarrow lx + 3my - nz = C_2.\\ \textsf{Thus, the solution of the given PDE is}\\ \phi(lx + 3my - nz, x² + 3y² - z²) = 0 \hspace{0.2cm}\forall l,m,n \in \mathbb{R}\hspace{0.1cm}\&\\ C_1 \hspace{0.1cm}\textsf{and}\hspace{0.1cm}C_2\hspace{0.1cm}\textsf{are arbitrary constants}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
15.07.21, 23:55

Dear Tamil, please use the panel for submitting a new question. Please correctly type math formulae so that it could solved.


Tamil
02.07.21, 10:46

Determine whether the function 2 2 2x  3xy  3y is positive definite, negative definite or neither.

LATEST TUTORIALS
APPROVED BY CLIENTS