2y(z−3)p+(2x−z)q=y(2x−3)p=∂x∂z,q=∂y∂zThe equation for the totaldifferential is thus given asdz=∂x∂zdx+∂y∂zdyThe differentials are;dzdxdy=2xy−6y=2yz−6y=2x−zThe Lagrange’s auxiliary equationsfor given PDE isy(2x−3)dz=(2x−z)dy=2y(z−3)dxChoosing(x,3y,−z)as multipliers, we havexdx+3ydy−zdz=0Integrating both sides, we have thus,x2+3y2−z2=C1OrChoosing(l,3m,−n)as multipliers, we haveldx+3mdy−ndz=0⇒lx+3my−nz=C2.Thus, the solution of the given PDE isϕ(lx+3my−nz,x2+3y2−z2)=0∀l,m,n∈R&C1andC2are arbitrary constants
Comments
Dear Tamil, please use the panel for submitting a new question. Please correctly type math formulae so that it could solved.
Determine whether the function 2 2 2x 3xy 3y is positive definite, negative definite or neither.